
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/269165310

Unveiling developers contributions behind code commits: An exploratory

study

Conference Paper · March 2014

DOI: 10.1145/2554850.2555030

CITATION

1
READS

95

4 authors, including:

Some of the authors of this publication are also working on these related projects:

SMartySPEM project. View project

Technical Debt Management with Business Perspectives View project

Daniel Alencar da Costa

University of Otago

21 PUBLICATIONS 89 CITATIONS

SEE PROFILE

Uirá Kulesza

Universidade Federal do Rio Grande do Norte

196 PUBLICATIONS 2,779 CITATIONS

SEE PROFILE

Roberta Coelho

Universidade Federal do Rio Grande do Norte

58 PUBLICATIONS 573 CITATIONS

SEE PROFILE

All content following this page was uploaded by Daniel Alencar da Costa on 20 September 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/269165310_Unveiling_developers_contributions_behind_code_commits_An_exploratory_study?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/269165310_Unveiling_developers_contributions_behind_code_commits_An_exploratory_study?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SMartySPEM-project?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Technical-Debt-Management-with-Business-Perspectives?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Costa22?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Costa22?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Otago?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Costa22?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Uira_Kulesza?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Uira_Kulesza?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Rio_Grande_do_Norte?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Uira_Kulesza?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberta_Coelho4?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberta_Coelho4?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Rio_Grande_do_Norte?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Roberta_Coelho4?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Costa22?enrichId=rgreq-3e7f15f7f9b127b6107247a0819f768e-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE2NTMxMDtBUzoyNzU4ODczNTQ1NDQxMjhAMTQ0Mjc4ODA3OTc3Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Unveiling Developers Contributions Behind Code
Commits: An Exploratory Study

1st author
1st author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

1st author's email address

ABSTRACT

The process of developing software is very dynamic and the
activities involved on it are very diverse. For instance, codes have

to be written, tested and revised, e-mails have to be sent, bugs
have to be communicated, managed and fixed. In other words the
contributions a developer can do when developing software are
very diverse. In this context, this paper describes an empirical
study whose goal was to assess and compare the developers’
contributions through software repository mining. Two medium-
sized projects – an open source and a commercial project – were
analyzed. Overall, 17,490 commits and 10,308 bugs reports were
analyzed. In the first part of our study, we have classified the

developers based on their contribution to the software repository
in three groups – core, active and peripheral developers. After
that, we have collected a series of metrics – code contribution,
buggy commits and resolution of priority bugs – for all the
developers of the investigated projects. Finally, we have analyzed
how the collected values for these metrics considering the
different developer groups. Our study findings show significant
differences in the contribution provided by the developers groups

considering the open-source and the commercial project.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management – productivity,
programming teams.

General Terms

Measurement, Experimentation.

Keywords

Mining software repositories, developer contribution.

1. INTRODUCTION
In a software development environment, a developer is expected
to participate and contribute in many kinds of activities besides
writing code. Participate on meetings, write e-mails, talk on

telephone and commenting on bugs are few examples of those
activities [1], not to mention other activities like criticizing
specification documents, or even criticizing the software process.
In this context, it would be crucial for software project managers
to know which developers stands out from the others on specific
contributions1 for being more aware of the team they are
coordinating. For instance, it could facilitate the motivation of the
developers or it could help the identification of risks - like a

training that is missing for those who lack some kind of

1 As in [1], we use the term "contribution" in this work to name all the

activities a developer perform during the process of software development.

contribution [2]. However, this variety of activities involved in the
software development turns the measurement of the developers'
contributions into a challenge since every kind of activities should
be considered. Manually collecting the data for measuring the
contributions of the developers, could be very time consuming
and could elevate the project's costs . On the other hand, software

repositories like: version control systems, change request systems,
communication archives (eg. e-mails), databases, logs etc. [3]
naturally record the actions of the developers. Those repositories
are utilized to support the execution of the developers' everyday
activities. Turning the static information recorded in software
repositories into relevant information has been the focus of the
mining software repository discipline over the last years [4] [5]
[6] [7] [8]. Thus, mining software repositories can be an
interesting strategy to investigate the developers’ contributions at

a low cost. Some effort has been done to evaluate the developers'
contributions from mining software repositories [1] [9] [10].

In [1], a model for measuring the individual developer
contribution is proposed. This model combines a list of actions of
the developers – in the software repositories – with traditional
metrics like lines of code (LOC) which produces a contribution
score to help the assessment of productivity. Another work
performed regarding developers' contributions is [10]. It is an

investigation of the sent e-mails versus commits made, which was
performed to verify if the developers are sending e-mails as much
as they are commiting on open source software projects.
Furthermore, in [9] a study that applied a author topic model
approach to investigate which developers have contributed more
for which topic (ex. module of a system) is presented. The study
utilizes a subset of the eclipse 3.0 as its case study . Their results
consists on a matrix indicating which developers have the higher

probability of contributing to a specific topic and a graphic
indicating which developers are similar based on the topics they
have contributed with. As we can see, previous studies on this
subject concentrate on the actions that developers perform on
software repositories. In this paper, our main goal is to better
understand which developers have the greater contributions and
how those contributions can be related to his/her actions on
software repositories. To do so, we analyzed two software

projects: the ArgoUML2 and a commercial system for managing
the conformity of bank transactions. Both systems repositories
were hosted in SVN3 and the bug reports stored at Bugzilla4 and
ClearQuest5 respectively. Overall, 17,490 commits and 10,308

2
 http://argouml.tigris.org

3
 http://subversion.apache.org/

4
 http://www.bugzilla.org

5
 http://www-03.ibm.com/software/products/us/en/clearquest/

bugs were analyzed. Our general research question was: "Which
kind of developers has the most contributions on software
projects?".

As the contributions of our work we can state that: (i) it proposes

a new way of assessing the developers' contributions by grouping
them and analyzing their contributions using repository mining
techniques; (ii) new metrics were proposed: code contributions
and priority bugs (section 2). Additionaly, the buggy commit [11]
[12] metric was firstly used in this context. Moreover, some
outcomes consistently detected through this study include:

 In the ArgoUML project, the core developers produced

less buggy commits than peripheral and active
developers, and they also have more contributions
regarding the code metrics. In addition, although core

developers presented a smaller proportion of high
priority bugs resolution when compared to the active
and peripheral ones, they solved more than a half of the
total amount of high priority bugs of the project.

 On the other hand, for the commercial project, the

active developers presented a smaller buggy commit
proportion compared to the core developers. As for the
high priority bugs, the active developers presented a
higher proportion of resolution. Furthermore, the active
and core developers did not present significant
differences regarding the code metrics.

The remainder of this paper is organized as following: after the
introduction, the methodology used in this work is presented
(Section 2). Later, the results obtained in our study and the
statistical analyses are described (Section 3). Then, some
discussions about the insights and the experience we gained are
exposed (Section 4) and the threats to validity of our work are also
described (Section 5). Finally we conclude this paper listing our
findings and stating our future work intentions (Section 6).

2. STUDY SETTINGS
The main aim of our empirical study is to investigate which kind
of developers has a superior contribution in terms of metrics
collected while mining information from existing software
repositories. Such information can help software project managers
to better understand the productivity and contribution of team

members and guide them when taking decisions regarding the
project. In this endeavor, our study was guided by the following
general question: "What developers have the most contributions
on software projects?". We then segmented this general question
into three specific questions described as following:

 RQ1. What kind of developer – core, peripheral or

active – performs less buggy commits?

 RQ2. What kind of developers – core, peripheral or

active – has more contributions regarding code?

 RQ3. What kind of developers – core, peripheral or

active – fixes more bugs with high priority?

Each research question led to the mining of specific metrics which
supported their answer. The core, active and peripheral
developers are pre-defined groups which we classified the

developers into. The heuristics used for the developers'
classification as well as the mining of the metrics are detailed in
the following sections.

2.1 Metrics For Quantifying Developers'

Contribution
Buggy Commits (RQ1). The buggy commit metric applied in this
work is based on [11] [12]. Figure 1 depicts how the buggy
commit metric is collected.

Figure 1. How Buggy Commit Metric Is Collected

First the miner searches for the bug fixing commits. The bug fixing
commits are the commits that are known to be fixing some bug.
The miner finds the bug fixing commits through the following
heuristics: (i) the commit has the word "fix" (and its derivatives)

on the message or/and (ii) the commit has an id pointing to a bug
registered in the change request system (eg. Bugzilla). Once a bug
fixing commit is found, the location of the modifications made to
fix the bug are registered using the diff command of the version
control system (VCS). For instance, if a comparison operator
needed to be modified to correct a bug, the line of this
modification is registered. Then, the miner finds the responsible
for introducing the content that needed to be changed using the

blame command of the VCS. The investigated projects adopted
the Subversion as their VCS.

Code Contributions (RQ2). The code contribution is a set of
metrics that captures the actions presented in Table 1. The metrics
are calculated for each developer and are collected from the VCS.
The collection of the metrics is made commit by commit, and the
authors of the commits properly receive an increment on their
respective counter for each of these metrics.

Table 1. Actions Gathered by the Code Contributions Miner

Action Description

Code Addition Code with plus signal "+" in VCS

Code Removal Code with minus signal "-" in VCS

Method Addition An entire method is added

Method Modification A part of the a method is modified

Priority Bugs (RQ3). The priority bug metric is quite simple to be
collected: a search for the bugs that were solved by a developer is
made in the change request system (CRS). After that, the priorities
of the bugs are verified. If the priority of a bug happens to be P1,
P2 or P3, this bug is classified as a priority bug that has been
solved, and the priority bug metric associated to the related
developer is incremented. In order to be the responsible for the
fix, the developer must have been the last one that resolved the

bug with the 'FIXED' resolution on the bug activity history.

2.2 Target Systems
We have chosen an open source and a commercial system to be
analyzed in our empirical study. The chosen open source project
was the ArgoUML. It is a popular Java open-source project that
represents an UML modeling tool which includes support for all
standard UML 1.4 diagrams. The ArgoUML project has 372,056
LOC and has a considerably number of registered users (1,474 at

the time of our study). In addition, it has been used in other
mining software repository studies [13]. It also runs on any Java
platform and is available in ten languages. On the other hand, the
commercial project was chosen due to the proximity of the
collaborators of the company with our research group. The project

represents a large scale web information system of an on-line
bank conformity management system. The system includes
functionalities to avoid frauds and to ensure the conformity of the
products sold in the bank's agencies.

2.3 Study Phases
The methodology of our study consisted on a set of four phases:
(i) first we selected the projects we were interested to analyze, (ii)
later, in order to address our research questions we investigated
how we could segment and classify the developers into
representative groups in such way that we could analyze the
groups instead the individuals; (iii) after the classification, we
applied the repository mining techniques for each project and
collected the results; (iv) finally, we analyzed the results and

tested the hypotheses related to the research questions (Section 3).
Next we explain in more detail the developer classification step.

Classification of Developers. One of the fundamental phases was
the developer classification. It was based on the development
roles presented in [14] and the classification heuristics were based
on the strategy defined in [15]. Figure 2 summarizes the heuristics
by detailing how each developer is classified in a role. For

instance, a developer is classified as a core developer, if he/she
has: (i) added and modified a file on the VCS; closed a ticket (eg.
task or bug etc.); and (iii) contributed at least 36 consecutive
months of the project (regularity). However for the commercial
project, as we analyzed a shorter period of time, we considered
the regularity to be the total time we analyzed for the project,
which was one year (Section 3.2)

Figure 2. Heuristics Used In The Developers' Classification

We initially used FRASR6 to collect the events for each developer
on the different software repositories. After that, we used process
mining techniques to apply the heuristics for the classification

[15]. The resulting classification for the ArgoUML project was: 5
core developers, 7 active developers and 23 peripheral developers
whilst for the commercial project the resulting classification was:
2 core developers and 5 active developers. There was no
peripheral developer for the commercial project. This happened
because the collaborators classified as peripheral on that project,
were not actually developers. This is explained in more detail in
the discussions’ section (Section 4).

3. STUDY RESULTS
This section describes the results of our study for the investigated
target systems.

6
 http://www.frasr.org

3.1 ArgoUML Results
This discusses the collected results for the buggy commits, code

contributions and resolution of priority bugs for all developers of
the ArgoUML project.

3.1.1 Analysis of the Buggy Commit Metrics
Table 3 summarizes the collected results for each developer
group. Each column corresponds to a developer group, and the
rows show the frequency of the buggy commits and non-buggy
commits in each group. We performed a Chi-square test with the
collected results to identify the existence of a relationship between

the groups (columns) and the frequencies (rows). The test returned
a p-value of < 0.0001. Thus, considering a 5% significance level,
we were able to reject the null hypothesis, which is: H0 – there is
no relation between the groups of developers and the proportions
of buggy commits and non-buggy commits.

The percentage of buggy commits over the total amount of
commits is greater in peripheral developers whilst it is smaller in
core developers (Table 3). In order to analyze the alternative

hypotheses, we executed other three Chi-square tests to the
following groups: (i) core versus active, (ii) core versus
peripheral and (iii) active versus peripheral. As we carried out
multiple comparisons, we performed the Bonferroni correction
[16] to counteract the type one error [17]. It is important to note
that for the core versus active developers comparison, we
obtained a p-value of 0.06 using the Bonferroni correction.
However, since Bonferroni correction is known to be too

conservative as it augments the probability of getting the type two
error [17], we also considered using another correction for dealing
with multiple comparisons to verify the resulting p-value, which
was Benjamini & Yekutieli (BY) [18]. We obtained a p-value of
0.036863 using the BY method. Since the Bonferroni correction
resulted in a p-value next to 5% and the BY correction resulted in
a p-value below 5%, we also considered our evidences to be
statistically relevant for this comparison. Thus, Table 4 shows the

conclusions of this analysis on the A1, A2 and A3 statements.

3.1.2 Analysis of the Code Contribution Metrics
In order to assess the code contributions collected metrics, we
performed the One-way ANOVA test [19] to verify the statistical
difference between the means of the developer groups. Table 3
shows the results for these metrics (number 2 to 5) which led us to
reject the null hypothesis for the majority of the metrics (except
for the method addition metric). The considered null hypothesis
is: H0. there is no difference between the groups' averages

regarding code contributions metrics. Later we performed several
Tukey HSD pair-wise tests [20] for the contributions metrics
which we were able to reject the null hypothesis. Our aim was to
analyze the alternative hypotheses. As we can observe in Table 2,
there is no statistical difference between the code contributions of
active developers and peripheral developers whilst core
developers distinguished for the most of the cases from the other
two groups (except for method additions when compared to active

developers). Hence, Table 4 shows the conclusions of this
analysis on the A4 and A5 statements.

3.1.3 Analysis of the Priority Bug Metrics
Table 3 presents the mined results for the priority bug metric of

the ArgoUML project. The columns contain each developer
group, and the rows contain the frequency of high priority bugs
and low priority bugs that were solved for each group.

Table 2. P-values Obtained For The Metrics From ArgoUML And Commercial Project

ArgoUML 4. Commercial Project

Metric Core x Active H1' Core x Peripheral H1'' Active x Peripheral H1''' Core x Active H1

1|Buggy Commit p = 0.060321/0.036863* p < 0.0001 p = 0.000225 p < 0.0001

2|Code Addition p < 0.05 (HSD) p < 0.01 (HSD) Non Significant Non Significant

3|Code Removal p < 0.01 (HSD) p < 0.01 (HSD) Non Significant Non Significant

4|Method Addition Non Significant p < 0.05 (HSD) Non Significant Non Significant

5|Method Modification p < 0.01 (HSD) p < 0.01 (HSD) Non Significant Non Significant

6|Priority Bug p = 0.007563 p < 0.0001 p < 0.000379 p < 0.0001

Table 3. Mined Results For The Buggy Commits and Priority Bugs Metrics Utilized In The Chi-Square Tests

 ArgoUML Commercial Project

 Core Active Peripheral Core Active

 Buggy Commit Metrics

Buggy Commit 324 94 84 120 94

Non Buggy Commit 8786 1931 940 1353 2372

Totals 9110 2025 1024 1473 2466

Percentage 3.6 4.8 8.9 8.4 3.8

 Priority Bugs Metrics

Priority Bug 502 233 125 33 219

Non Priority Bug 1505 526 171 76 17

Totals 2007 759 296 109 236

Percentage 25 30.6 42.2 30.3 92.8

Table 4. Conclusions For The ArgoUML And Commercial Project

A1 H1'. core developers proportionally produce less buggy commit than active developers

A2 H1''. core developers proportionally produce less buggy commits than peripheral developers

A3 H1'''. active developers proportionally produce less buggy commit than peripheral developers

A4 core developers have more code additions, code removals, and method modifications when compared to active and peripheral developers.

A5 core developers have more method additions when compared to peripheral developers whilst the same cannot be said when compared to active

developers

A6 H1'. core developers proportionally solve less priority bugs than active developers

A7 H1''. core developers proportionally solve less priority bugs than peripheral developers

A8 H1'''. active developers proportionally solve less priority bugs than peripheral developers

C1 H1. active developers have a minor proportion of buggy commits compared to core developers.

C2 H0. There is no considerable difference between the core and active groups' averages regarding code contributions metric considering a 5%

significance level

C3 H1. active developers proportionally solve more priority bugs than core developers.

We performed the Chi-square test, which resulted in a p-value of

< 0.0001, so we were able to reject the following null hypothesis:
H0. there is no relation between the group of developer and the
proportion of the priority bugs that were solved. We found the
resolution percentage of high priority bugs to be the greater for
peripheral developers whilst to be the smaller for core developers.
Hence, we performed other pair-wise Chi-square tests to analyze
the alternative hypotheses. The resulting p-values (Table 2) show
us a statistical relevance under a 5% significance level. Thus, the

conclusions obtained of this analysis can be seen in Table 4 on the
A6, A7 and A8 statements. Finally, although we found the
resolution proportion of high priority bugs of core developers to
be the smallest of the three groups, it is worth noting that they
have resolved more than a half of the total of high priority bugs
that were analyzed for the project.

3.2 Commercial Project Mining Results
This section presents the obtained results for the commercial
project. We mined the buggy commit, code contribution and
priority bugs metrics for the development period from January
2008 to January 2009 we also adapted the classification method

for this period.

3.2.1 Analysis of the Buggy Commit Metrics
Table 3 exhibits the collected results for the buggy commit metric
considering the commercial project. The columns represent the
developer groups, and the rows the amount of buggy commits and
non-buggy commits for the investigated software project. Table 3

also shows that the percentage of performing a buggy commit is

greater for core developers than active ones. The study did not
find any peripheral developers during the classification process
(Section 4). We executed the Chi-square test, which resulted in a
p-value of < 0.0001. Thus, we were able to reject the following
null hypothesis: H0: there is no relation between the developer
groups and the proportions of the buggy commits (Table 4, C1
statement). We consulted the staff of the commercial project in
order to find an explanation for this result. We observed that a

senior developer of the company participated only in beginning of
the project, and he gave a significant contribution at this period.
Later, two junior developers have been enrolled for the company
to work on this project with the responsibility of implementing the
new functionalities while the senior developer moved to another
project. Hence, the senior developer was classified as an active
developer for the sake of the smaller period of work, while the
two junior developers were classified as core developers due to
the greater period of work in the project. Furthermore, we also

observed that the senior developer's results strong contributed for
the smaller proportion of the buggy commits for the active
developers. Due to space restrictions we did not make available
the results of each developer, but the interested reader may refer
to http://goo.gl/UWcPBX.

3.2.2 Analysis of the Code Contributions Metrics
The results mined for the code contributions metrics can be seen
in Table 2, which presents the T-tests [21] performed with the

core and active developer groups. From the p-values obtained, we
were not able to reject the null hypothesis, which is: H0. there is
no difference between the groups' averages regarding code
contributions metrics (Table 4, C2 statement). The possible reason
for this result is the same as discussed in the mining of buggy

commit metric (Section 3.2.1). The senior developer classified as
an active developer had a significant code contribution in the
period that he/she works in the project. For instance, for the
method additions metric, this senior developer presented the value
of 315,689 whilst the two developers classified as core developers
presented 10,681 and 15,887, respectively. When discussing with
the project manager, we discovered that the senior developer
started the development of the project which involves the

implementation of the architecture as well as the first set of
functionalities the system should provide. The mined result for
each developer can be found in http://goo.gl/UWcPBX

3.2.3 Analysis of the Priority Bugs Metrics
Table 3 shows the obtained results for the priority bugs metric of
the commercial project. From the results we can observe that the
proportion of solved priority bugs for core developers is smaller
than the proportion presented by the active developers. The Chi-
square test was applied and resulted in a p-value < 0.0001, so we

were able to reject the null hypothesis which is: H0. there is no
relation between the group of developer and the proportion of the
priority bugs that were solved (Table 4, C3 statement). We
contacted the staff of the project to better analyze the obtained
results. From this interaction, we found that the project's process
of bug assignment consists on assigning the same developer that
implemented the use case (UC), which a bug is concerned of. For
example, if a developer01 implemented the UC(01), the bugs that

occur when executing the functionalities of UC(01) are
automatically assigned to developer01. In this context, since the
senior developer, which started the implementation of the project,
had a significant contribution for the project, he/she also
addressed a greater amount of bug resolution. Thus, he/she gave a
significant contribution in this metric for the active developers
group. For instance this senior developer has solved a total of 213
high priority bugs in the period of one year while only 33 high

priority bugs were resolved by all core developers. The collected
priority bugs metric of each developer can be verified at:
http://goo.gl/UWcPBX

4. DISCUSSIONS
In our work, we tried to apply the same methodology for the

ArgoUML and the commercial project. One of our aims was to
observe the differences between them when mining the
contributions of the developers. Next we highlight the main
differences found in the empirical study.

The classification method was not adequate for the commercial
project. In our study, we have used the developer classification
method presented in [15], which was previously applied to open
source projects. When applying this classification method for a
commercial project in our study, we noticed that a very

experienced developer was classified as an active developer
because he/she has contributed only during part of total period of
the project. On the other hand, this developer has the most
significant contribution for the project, and should be classified as
a core developer of the system since he/she has implemented the
system architecture and the first main functionalities. In addition,
he also presented better values for buggy commit and code
contribution metrics compared to the other developers, including

the core developers. This shows that the classification method
proposed in [15] does not seem adequate to be used in commercial
projects. Thus, new classification methods should be explored in
the context of commercial projects.

Many peripheral developers were not developers. By applying

the classification method to the commercial project, we found that
many peripheral developers were not in fact real developers. They
have additions, modifications and deletion actions on code
repository as well as ticket-closed actions, but those actions were
not related to commits of source-code. For instance, some
additions were related to updates in the project plan artifact, and
some of the task-closed were related to a requirement related task.

Developer Contribution Mining for Project Management. We

believe that mining and quantifying the contributions of
developers, can help the activity of software project management.
For example, the developers whose contributions are considerably
under the average compared to other developers could be
analyzed with further care. Several questions can be raised in this
context, such as: Why specific developers have a reduced number
of contributions during a specific period? What are the expected
contributions for team leaders or architects in a project? What is

the productivity of new members in a team? We are currently
applying the metrics presented in this paper, to analyze the
contributions of a software team in a series of commercial projects
from the same company in order to help software project
managers to take decisions.

5. THREATS TO VALIDITY
In this section we describe the threats to validity of the obtained
results for our empirical study. We first describe the internal
validity and then the external validity.

5.1 Internal Validity
Buggy Commit Mining. The technique used for the buggy commit
mining was based on [11] [12]. One possibly threat of this
technique is finding an improper responsible for the buggy
commit due to changes of requirements. For instance, let's
consider the code of a system for buying movie tickets presented

in Figure 3. Class A and Class B share the same logic that
verifies the age of the user. In revision 3 (the number on the left of

the name), Rahul modified the age checking of Class A due to a
change of the requirement, but he forgot to also modify class B.

Figure 3. Revision, Author and Line of Code for the Classes of
a Movie Ticket E-Shopping System

In revision 3 (the number on the left of the name), Rahul modified

the age checking of Class A due to a change of the requirement,
but he forgot to also modify class B. Once a bug is registered and
another commit is made to correct the bug, the miner for the
buggy commit metric would find bob as the responsible for the

bug on Class B. When bob introduced the code in Class B, the
code was right, so is he the true responsible for the bug? Although
the situation presented here is a threat for the mining of the buggy
commit metric, we believe this situation is an exception and not
the common context when mining the 17,490 commits of the
analyzed projects.

The Developer Classification Method. In our study, we have used
the same heuristics presented in [15] the process of developer
classification, because of that we inherited the same threats.
However, we believe that these heuristics were appropriate for our
study, specially the analysis of the open-source system, as we

could find relevant statistical differences between the developer
groups. We plan to validate the heuristics for classifying
developers in open-source and commercial projects by confirming
with project managers and leaders that the roles played by the
developers are in fact aligned with the classification.

5.2 External Validity
The study presented in this paper was conducted through the
analysis of a popular open source project and a commercial
project. Although the selected open source project is
representative of the development processes used among large
open source software projects, we cannot extend our results to
similar open-source projects. Further evaluation is necessary
through the conduction of new empirical studies that mining and

analyzing other existing open source projects and commercial
projects, in order to confirm, and possibly generalize, our
findings. In fact, we are currently conducting a new empirical
study involving several open source systems, and the collected
results are up to now quite similar to the ones we have found in
the ArgoUML project.

6. CONCLUSION
Our work analyzed the developers' contributions of two software
projects: ArgoUML and a commercial project. The contributions
were analyzed through three different metrics: buggy commits
(RQ1), code contributions (RQ2) and priority bugs (RQ3). We
grouped the developers into groups which reflected their actions
in the software repositories. The groups were: core, active and

peripheral developers inspired by the roles described in [14]. Our
study revealed the following main conclusions: the developers
groups denominated as core, active and peripheral, presented
statistically significant differences concerned the contribution
metrics. For instance, for the ArgoUML project, we found the
core developers to be the group with the majority of contributions
regarding code and they also presented the smaller proportion of
buggy commits. In addition, we also found the active developers
to be in the middle of core and peripheral developers. For

example, they presented a smaller proportion of buggy commits
when compared to the peripheral ones, but they also presented a
higher proportion when compared to the core developers.

Other main finding of our work, is the fact that the developer
groups differed significantly concerning the contributions metrics
when we compare the two projects. For example, the active
developers of the commercial project presented a higher

proportion of high priority bugs resolution and a smaller
proportion of buggy commits when compared to the core
developers whilst the contrary happens on the ArgoUML project.
These results led us to think about new strategies to deal with
commercial project when analyzing the developers' contributions
like, for instance, the investigation of new classification strategies
and metrics assessment strategies. As future work, we intend to
replicate this study to other open source and commercial software

projects. We are also currently working in performing the mining
techniques presented in this work in a private company
environment to support the project management activities. We
also intend to analyze other kinds of contributions like, for

example, the patches submitted by developers on the open source
projects.

7. REFERENCES
[1] E. Kalliamvakou, G. Gousios, D. Spinellis, and N. Pouloudi,

"Measuring Developer Contribution from Software Repository Data,"

Mediterranean Conference on Information Systems, 2009.

[2] J. Jiang and G. Klein, "Software development risks to project

effectiveness," The Journal of Systems and Software, pp. 3-10, 2000.

[3] A.E. Hassan, "The Road Ahead for Mining Software Repositories,"

Frontiers of Software Maintenance, pp. 48-57, September 2008.

[4] T. Zhang and B. Lee, "A Hybrid Bug Triage Algorithm for Developer

Recommendation," SAC '13 Proc. ACM-SAC, 1088-1094 2013.

[5] S. Wang, D. Lo, and L. Jiang, "An empirical study on developer

interactions in StackOverflow," SAC '13 Proc. of ACM, 1019-1024

2013.

[6] S. Wang, F. Khomh, and Y. Zou, "Improving bug localization using

correlations in crash reports," Proc. of MSR'13, pp. 247-256, 2013.

[7] Debdoot, and Malika Garg Mukherjee, "Which work-item updates need

your response?," Proc. of MSR'13. IEEE Press, 2013.

[8] Hoda, et al Naguib, "Bug report assignee recommendation using

activity profiles.," Proc. of MSR'13. IEEE Press, 2013.

[9] P. Rigor, Sushil Bajracharya, C. Lopes, and P. Baldi, "Mining Eclipse

Developer Contributions via Author-Topic Models," ICSE Workshops

on MSR '07, May 2007.

[10] S. K. Sowe and A. Cerone, "Integrating Data from Multiple

Repositories to Analyze Patterns of Contribution in FOSS Projects,"

Electronic Communications of the EASST, 2010.

[11] J. Eyolfson, L. Tan, and P. Lam, "Do Time of Day and Developer

Experience Affect Commit Bugginess?," Proc. of MSR, pp. 153-162,

2011.

[12] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do Changes

Induce Fixes?," Proc. of MSR'05, pp. 1-5, 2005.

[13] Vladimir, et al Rubin, "Process mining framework for software

processes.," Software Process Dynamics and Agility. Springer Berlin

Heidelberg, pp. 169-181, 2007.

[14] Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye K. Nakakoji,

"Evolution patterns of open-source software systems and

communities," Workshop on Principles of Softw. Evolution. ACM, pp.

76–85, 2002.

[15] W. Poncin, A. Serebrenik, and M. van den Brand, "Process mining for

software repositories," (CSMR), pp. 5-14, March 2011.

[16] O. J. Dunn, "Multiple comparisons among means," ournal of the

American Statistical Association, pp. 52-64, 1961.

[17] M. Shermer, The Skeptic Encyclopedia of Pseudoscience, 2nd ed.:

ABC-CLIO p. 455, 2002.

[18] Y. Benjamini and D. Yekutieli, "The control of the false discovery rate

in multiple testing under dependency," Annals of statistics, pp. 1165-

1188, 2001.

[19] V. Bewick, L. Cheek, and J. Ball, "Statistics review 9: one-way

analysis of variance.," CRITICAL CARE-LONDON, pp. 130-136, 2004.

[20] R. Lowry. (2013, August) One Way ANOVA – Independent Samples.

[Online]. http://vassarstats.net/textbook/ch14pt2.html

[21] J. J. O'Connor and E. F. Robertson, "Student's t-test," MacTutor

History of Mathematics archive.

[22] R. Shokripour, A. John, Z. M. Kasirun, and S. Zamani, "Why so

complicated? simple term filtering and weighting for location-based

bug report assignment recommendation," Proc. of MSR'11, pp. 2-11,

2013.

[23] P. J. Adams, A. Capiluppi, and A. Groot, "Detecting Agility of Open

Source Projects Through Developer Engagement," IFIP, pp. 333-341,

2008.

View publication statsView publication stats

https://www.researchgate.net/publication/269165310

