
Noname manuscript No.
(will be inserted by the editor)

Improving the Pull Requests Review Process Using
Learning-to-rank Algorithms

Guoliang Zhao · Daniel Alencar da Costa ·
Ying Zou

Received: date / Accepted: date

Abstract Collaborative software development platforms (such as GitHub and
GitLab) have become increasingly popular as they have attracted thousands of ex-
ternal contributors to contribute to open source projects. The external contributors
may submit their contributions via pull requests, which must be reviewed before
being integrated into the central repository. During the review process, reviewers
provide feedback to contributors, conduct tests and request further modifications
before finally accepting or rejecting the contributions. The role of reviewers is key
to maintain the effective review process of the project. However, the number of de-
cisions that reviewers can make is far superseded by the increasing number of pull
requests submissions. To help reviewers to perform more decisions on pull requests
within their limited working time, we propose a learning-to-rank (LtR) approach to
recommend pull requests that can be quickly reviewed by reviewers. Different from
a binary model for predicting the decisions of pull requests, our ranking approach
complements the existing list of pull requests based on their likelihood of being
quickly merged or rejected. We use 18 metrics to build LtR models and we use six
different LtR algorithms, such as ListNet, RankNet, MART and random forest.
We conduct empirical studies on 74 Java projects to compare the performances of
the six LtR algorithms. We compare the best performing algorithm against two
baselines obtained from previous research regarding pull requests prioritization:
the first-in-and-first-out (FIFO) baseline and the small-size-first baseline. We then
conduct a survey with GitHub reviewers to understand the perception of code
reviewers regarding the usefulness of our approach. We observe that: (1) The ran-
dom forest LtR algorithm outperforms other five well adapted LtR algorithms to
rank quickly merged pull requests. (2) The random forest LtR algorithm performs
better than both the FIFO and the small-size-first baselines, which means our

Guoliang Zhao
School of Computer, Queen’s University, Kingston, Ontario, Canada
E-mail: 17gz2@queensu.ca

Daniel Alencar da Costa and Ying Zou
Department of Electrical and Computer Engineering, Queen’s University,
Kingston, Ontario, Canada
E-mail: {daniel.alencar, ying.zou}@queensu.ca

2 Guoliang Zhao et al.

LtR approach can help reviewers make more decisions and improve their produc-
tivity. (3) The contributor’s social connections and contributor’s experience are
the most influential metrics to rank pull requests that can be quickly merged.
(4) The GitHub reviewers that participated in our survey acknowledge that our
approach complements existing prioritization baselines to help them to prioritize
and to review more pull requests.

Keywords Pull requests, learning-to-rank, merged, rejected

1 Introduction

The pull-based development model has become a standard for distributed software
development and has been adopted in several collaborative software development
platforms, such as GitHub, GitLab and Bitbucket [1]. Compared with other classic
distributed development approaches (e.g., sending patches to development mail-
ing lists [2]), the pull-based development model provides built-in mechanisms for
tracking and integrating external contributions [3]. For example, with pull-based
development model, some pull requests may be integrated with just one click,
without manual intervention.

Under the pull-based development model, contributors can fetch their local
copies of any public repository by forking and cloning them. Next, contributors
can modify their clones to fix a bug or implement a new feature as they please.
Ultimately, contributors may request to have their code changes merged into the
central repository through pull requests (PRs) [4]. Once contributors submit PRs,
they become available to reviewers (i.e., PRs undergo the opened state). If a PR
is approved by reviewers and passes the integration tests, its respective code is
merged into the central repository (i.e., the status of the PR changes to merged).
Such collaborative software development platforms offer social media functional-
ities to allow contributors to easily interact with each other, such as following
projects and communicating with reviewers.

As Gousios et al. [5] mentioned, the role of reviewers is key to maintain the
quality of projects. Therefore, reviewers should carefully review PRs and decide
whether a PR is worth integrating. Code reviewers should also communicate the
modifications that are required before integrating a PR to external contributors.
Nevertheless, reviewers typically have to manage large amounts of open PRs si-
multaneously. Through our preliminary study of 74 projects hosted on GitHub,
we observe that the workload (measured by the number of open PRs) of review-
ers tends to rise while the decisions made by reviewers tend to remain roughly
constant. As shown in Figure 1, the average number of open PRs is below five
on January 2014. Overtime, the average number of open PRs keeps on increasing
and reaches 30 on May 2016. However, the average number of reviewers and the
average number of decisions made every day by reviewers remain roughly the same
(e.g., an average of one decision per day). In fact, Steinmacher et al. [6] observed
that 50% of PRs are submitted by casual-contributors, which considerably inflate
the number of PR submissions that must be processed.

Gousios et al. [5] mentioned that prioritizing multiple PRs is important for
reviewers when they face an increasing workload. The authors propose a PR pri-
oritization tool, called PRioritizer, to automatically recommend the top PRs that
reviewers should first deal with [7]. The tool can help reviewers select the PR that

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 3

●

●

●
●

●

●

●
●

●
●

●

● ● ●

●

●

●

●

●

● ●

●
●

●
● ●

●
●

●

0

10

20

20
14

−
01

20
14

−
02

20
14

−
03

20
14

−
04

20
14

−
05

20
14

−
06

20
14

−
07

20
14

−
08

20
14

−
09

20
14

−
10

20
14

−
11

20
14

−
12

20
15

−
01

20
15

−
02

20
15

−
03

20
15

−
04

20
15

−
05

20
15

−
06

20
15

−
07

20
15

−
08

20
15

−
09

20
15

−
10

20
15

−
11

20
15

−
12

20
16

−
01

20
16

−
02

20
16

−
03

20
16

−
04

20
16

−
05

month

nu
m

be
r

of
 (

pu
ll

re
qu

es
ts

/d
ec

is
io

ns
) ● open PRS

decisions made
active reviewers

Fig. 1 The average number of open PRs and the average number of decisions made every day
among 74 Java projects on GitHub.

needs their immediate attention. To increase the decisions made by reviewers, the
time taken by a reviewer to make decisions on PRs (either rejected or merged)
should be considered when the tool recommends PRs to reviewers. In our prelim-
inary study based on 74 projects, the median time taken by a reviewer to make
decisions on PRs is 16.25 hours as shown in Figure 2. There are PRs that can be
reviewed quickly (e.g., the minimum time taken to review a PR is 8 minutes), while
some other PRs take a long time to review (e.g., the maximum time is more than
400 hours). More specifically, recommending reviewers PRs that can be quickly
reviewed allows them to handle more contributions and give expedite feedback on
PRs, which could be very useful when reviewers have only a limited time (e.g.,
half an hour or few minutes) to review PRs. The fast turn-around could ultimately
improve the productivity of developers and reduce the waiting queue of open PRs
so that contributors do not need to wait for a long time to receive feedback. There-
fore, it is desirable to provide an approach that can recommend PRs that can be
merged or rejected in a timely fashion. Instead of replacing the working practices,
our approach aims to complement the existing practices of reviewers if they de-
cide to take a number of quick decisions in a limited period of time. We adopt
learning-to-rank (LtR) algorithms [8] [9] to rank PRs that are likely to be quickly
merged or rejected. In particular, we address the following research questions.

RQ1. What learning-to-rank algorithm is the most suitable for rank-
ing PRs?

We study six LtR algorithms including pairwise LtR algorithms and listwise
LtR algorithms, such as RankBoost, MART, RankNet and the random forest. We
find that the random forest based algorithm outperforms the other algorithms
with respect to rank PRs that can receive quick decisions.

RQ2. Is our approach effective to rank PRs that can receive decisions
quickly?

4 Guoliang Zhao et al.

Fig. 2 The time taken to make decisions on PRs among 74 Java projects on GitHub.

Gousios et al. [5] observed that there are two well-adapted prioritizing cri-
teria among reviewers: first-in-and-first-out (FIFO) criterion and small-size-first
criterion that recommends the PRs having the minimum source code churn. We
compare the performance of the random forest algorithm with the FIFO baseline
and the small-size-first baseline. Our LtR approach outperforms both the FIFO
baseline and the small-size-first baseline. Our results suggest that our LtR ap-
proach can help reviewers to make decisions regarding PRs more efficiently.

RQ3. What are the most significant metrics that affect the ranking?
To test the effect of each metric, we exclude a given metric and re-run the

learning-to-rank approach without the metric. Then, we obtain the decreasement
in the accuracy of LtR algorithm without that metric. The larger the decrease-
ment, the more important a metric is. We find that metrics that represent the
reputation of contributors (e.g., the previous PRs merged percentage) and the
social connection of contributors (e.g., the number of followers and the previous
interaction) affect the ranking the most.

RQ4. How do GitHub reviewers perceive the usefulness of our ap-
proach?

We conduct a survey with GitHub reviewers to evaluate the usefulness of our
approach. We also aim to investigate whether our approach can complement the
existing criteria used by reviewers to prioritize PRs (e.g., FIFO and small-size-first
criteria). 86% of reviewers who participate in our survey believe that our approach
can help them to obtain a higher throughput of reviewed PRs within their limited
working time.

Organization of the paper: The related work is presented in Section 2. We
describe our experiment setup and our results in Sections 3 and 4, respectively. In
Section 5, we discuss the soundness of our chosen threshold, the experience levels
of reviewers and the importance of the PRs recommended by our approach. The

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 5

threats to validity are discussed in Section 6. Finally, we conclude the paper in
Section 7.

2 Related work

In recent years, researchers have conducted various studies regarding the factors
that impact on the final decisions on PRs [5] [10] [11]. Researchers have also
striven to help reviewers by, for example, recommending the right reviewer to a
given PR [7] [12] [13] [14] [15]. We use this section to situate our work with respect
to the related research and highlight our contributions.

2.1 Understanding the final decisions made upon PRs

Understanding the decisions made upon PRs can guide contributors to submit
high quality PRs. Gousios et al. [10] conducted an empirical study on 291 GitHub
projects to obtain the important metrics that affect both the time to review and the
decision to merge PRs. They found that the final decision of a PR was significantly
affected by whether it touches recently modified code of the system. They also
observed that the contributor’s previous successful rate (the percentage of previous
PRs that a contributor has successfully merged) played an important role in the
time to review PRs. Different from Gousios et al., we use LtR algorithms to rank a
list of PRs based on how quickly a decision to merge or reject a PR can be made.
We consider additional dimensions of metrics in models, such as social connection
and complexity metrics.

In the recent research, Steinmacher et al. [6] analyzed the PRs of casual-
contributors and conducted surveys with casual-contributors and reviewers to ob-
tain the reason for rejected PRs from casual-contributors. They found that the
mismatch between developer’s and reviewer’s opinions was among the main rea-
son for the rejection of PRs. Our goal is to recommend PRs with potential to be
quickly processed. Our approach can help reviewers to prioritize PRs and allow
them to perform more decisions on PRs within their limited working time.

In addition, Gousios et al. [5] surveyed various metrics that reviewers examine
when evaluating a PR. The authors observed that reviewers typically focus on
checking whether the PR matches the current style of a project and the source
code quality of the PR. Because of the observations made by Gousios et al. [5], we
include metrics to measure the source code quality of the PRs (e.g., cyclomatic
complexity of the source code and number of comments in the source code). Tsay
et al. [11] analyzed the social connection of contributors in the process of evaluat-
ing contributions in GitHub. The authors found that PRs from contributors with
a strong social connection to the project are more likely to be merged. Consid-
ering the observations made by Tsay et al. [11], we use social connection metrics
(e.g., social distance between contributors and reviewers, and the number of prior
interactions of contributors) in our experiment.

Differently from the aforementioned research, our study focuses on recommend-
ing PRs that can quickly receive decisions instead of predicting the final decision
on a PR. With a recommended ranked list, reviewers have the option to use part
of their time to quickly make several decisions before digging into a PR that will

6 Guoliang Zhao et al.

likely take more time to review. Thus, our approach is intended to complement
the existing criteria to prioritize PRs and help reviewers to make more decisions
whenever they are interested.

2.2 Helping reviewers evaluate contributions

Assigning incoming PRs to highly relevant reviewers can reduce the time needed
to review PRs. Thongtanunam et al. [12] [13] took full advantage of the previously
reviewed file paths to assign appropriate reviewers of new PRs automatically.
Balachandran et al. [14] introduced a reviewer recommendation tool by integrating
several automatic static analyses (i.e., automatically checking for coding standard
violations and common defect patterns) into the code reviewing process. Besides
focusing on the information about PRs themselves, Yu et al. [15] [16] implemented
a reviewer recommendation approach by leveraging both the textual semantic
information of PRs and the social network of contributors.

Van et al. [7] proposed a PR prioritization tool, called PRioritizer, to automat-
ically recommend the top PRs that need immediate attention of reviewers. Li et
al. [17] leveraged the textual similarity between incoming PRs and other existing
PRs to warn reviewers about duplicate PRs and prevent reviewers from wasting
time on them.

Despite the great advances of prior research, the time required to make a deci-
sion regarding a PR has not yet been explored when recommending a ranked list
of PRs to reviewers. This is important to quickly give feedback to contributors and
increase the number of PRs that can be processed by reviewers. In addition, our
work builds on top of prior research and explore metrics but not yet being explored
in the recommendation approaches for PRs, such as the complexity metrics and
the social connection metrics.

3 Experiment Setup

In this section, we present the process for collecting data and extracting metrics
for building LtR models. We also explain the analysis of correlated metrics. The
overview of our approach is shown in Figure 3. We first select a set of experiment
projects and collect the data of the selected projects (e.g., PRs, issues, commits).
Next, we build LtR models on the 18 extracted metrics to recommend PRs that
are likely to receive decisions quickly. We evaluate the performance of the LtR
models and calculate the effect of each metric on ranking PRs.

3.1 Collecting data

As shown in Figure 3, we collect the data of our experiment from the GHTorrent
database [18] and GitHub using the GitHub API.

Project Selection. To avoid working on personal, inactive or toy projects [19],
we exclude projects containing less than 500 PRs. Our dataset contains data from
November 2010 until May 2016. Given that we plan to analyze code quality met-
rics, we restrict our analyses to only one programming language (i.e., Java). This

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 7

Fig. 3 The overall view of our approach.

choice allows us to implement scripts that automatically compute, for example,
the addition of code complexity or code comments, because we do not need to
adapt to many different programming languages. Nevertheless, our approach can
be adapted to other programming languages, provided that the metrics are prop-
erly extracted. We start with a set of 303 Java projects that contain more than
500 PRs. Then, we apply the following criteria to exclude projects from the initial
selection:

– We exclude projects have been deleted from GitHub. For deleted projects,
GHTorrent database still records its information (e.g., created time, and owner)
but we cannot find the PRs of deleted projects, since all PRs have been cleaned.

– We exclude projects that are forked from other existing GitHub projects. As
Gousios et al. [10] mentioned, more than half of the GitHub repositories are
forks of other repositories. To ensure that we study projects that receive ex-
ternal contributions, we only include original projects.

– The PRs of a project must be correctly labeled (merged or closed) for a recom-
mender system to work correctly. However, as Steinmacher et al. [6] observed,
many projects do not adopt pull based development. Instead, these projects
prefer to merge contributions via git Command Line Interface (CLI). For ex-
ample, through our manual analysis, we find PRs that are closed with comment
“Cherry picked.Thanks.” meaning that their commits were merged. As a re-
sult, the vast majority of PRs in such projects would be labeled as closed
when their commits were actual merged into the main repository. We analyze
the 94 remaining projects after excluding the deleted and forked projects. In
the projects that do not adopt the pull based development, we find that the
ratio of PRs labeled as merged over the total number of PRs is usually lower
than 40%. In projects that use the pull based development, the ratio of merged
PRs is around 73% [10]. To avoid studying noisy PRs, we exclude projects for
which the merge ratio is less than 40% [10]. We discuss the impact of using
different merge ratio thresholds in Section 5.1.

After filtering the projects, the number of our analyzed projects is reduced to
74.

Data Collection. After the project selection step, we collect the PRs, issue
reports, comments and commits of the subject projects. We download the infor-
mation by querying the GHTorrent (through Google BigQuery1) and searching
GitHub repositories using the GitHub API. The GHTorrent database includes the
meta information of PRs and commits, such as the id, the related project id and

1 http://ghtorrent.org/relational.html

8 Guoliang Zhao et al.

related PRs ids. However, information (e.g., textual information of PRs and the
code difference information of commits) is not available in the GHTorrent database
to compute our metrics (more details in Section 3.2). To collect such information,
we use the GitHub API to search commits and PRs in GitHub repositories.

In short, our final dataset consists of 74 Java projects containing 100,120 PRs
with 74,060 merged PRs and 26,060 rejected PRs.

3.2 Metrics Calculation

Given that we need to predict PRs that can receive a quick decision, we only
collect the metrics that are available before the final decision (i.e., merged or
rejected) of a PR. We select the metrics based on prior studies that investigate
PRs [5] [7] [10] [11]. We categorize the selected metrics into four categories: source
code metrics, textual metrics, contributor’s experience metrics and contributor’s
social connection metrics.

Source code metrics. Our source code metrics describe the quality and the
size of the modified source code in a PR. In total, we collect nine source code
metrics, listed as follows.

– test inclusion (whether a contributor modifies test files in the PR). Previous
research [20] finds that PRs containing test files are more likely to be merged
and reviewers perceive the presence of testing code as a positive indicator [5].

– test churn (the source code churn in test files). Besides checking whether con-
tributors change test files, we record the source code churns of the changes in
test files. The source code churns measure the number of lines of code that
are modified. A high code churn may indicate a better quality PR because the
contributor invests effort in the tests.

– src churn (the source code churns in other files that are not test files). Prior
research [21] reports that the size of a code patch plays an important role in
both the acceptance of the patch and the acceptance time of the patch.

– files changed (the number of files touched in a PR). We use the number of
modified files as a measure of the scale of a PR. Large or small scale PRs
might affect the time to merge or reject a PR.

– num commits (the number of commits included in a PR). We use the number
of commits as a measure of the scale of a PR. Large or small scale PRs in terms
of the number of commits might affect the time to merge or reject a PR.

– commits files changed (the number of total commits on files modified by a PR
three months before submitting the PR). Our goal is to check whether PRs
modifying an active part of the system is more likely to be merged or rejected
quickly.

– bug fix (whether a PR is an attempt to fix a bug). Gousios et al. [5] finds that
reviewers would consider reviewing the PRs that fix bugs before reviewing the
PRs related to enhancements.

– ccn added, ccn deleted (the cyclomatic complexity of newly added code and
deleted code in a PR). We use ccn added and ccn deleted to evaluate the source
code quality of PRs because prior research [5] [10] finds that the source code
quality of PRs could affect the decisions made on PRs.

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 9

– comments added (the number of comments that were introduced in the source
code of a PR). Well commented source code is easy to understand [22] and
may accelerate the reviewing process.

Textual information metrics. Textual information metrics describe the gen-
eral textual properties of a PR. We select the following three important metrics:

– title length (the number of words in the title of a PR). A longer title may
contain more useful information about a PR and may help reviewers easily
understand a PR.

– description length (the number of words in the description of a PR). A longer
description may contain more meaningful information about a PR for reviewers
to understand.

– readability (the Coleman-Liau index [23] (CLI) of the title and description
messages of a PR as well as its commit messages). CLI has been adopted to
measure the text readability in bug reports [24] and education material [25].
CLI represents the level of difficulty to comprehend a text, ranging from 1
(easy) to 12(hard). The equation for CLI is shown in Equation 1

CLI = 0.0588 ∗ L− 0.296 ∗ S − 15.8 (1)

where L is the average number of characters per 100 words and S is the average
number of sentences per 100 words.

Contributor’s experience metrics. The contributor’s experience metrics
describe the experience of the contributors who submit PRs. We select two impor-
tant metrics:

– contributor succ rate. The percentage of PRs from a contributor that have been
merged before submitting the current PR.

– is reviewer. Whether a contributor is also a reviewer in the same project. Code
reviewers are much more experienced and more familiar with their projects
and code reviewing process than the external contributors.

Contributor’s social connection metrics. The contributor’s social connec-
tion metrics represent the social connection that the contributor has on GitHub.
We measure the social distance and the prior interactions of contributors.

– social distance measures the social closeness between a contributor and a re-
viewer. If a contributor follows a reviewer, social distance is set to 1, otherwise,
it is 0.

– prior interaction is used to count the number of events that a contributor has
participated in the same project before submitting a PR [11]. Events include
submissions of issue reports, PRs and comments.

– followers measures the number of followers that a contributor has. A high
number of followers indicates a contributor’s popularity and influence.

For each PR of the subject projects, we extract each aforementioned metric
by performing a query in the collected datasets (e.g., counting the total number
of PRs and the merged PRs of a contributor to calculate contributor cuss rate).
Next, we store the metrics related to PRs into a table and train and test LtR
models for each project.

10 Guoliang Zhao et al.

3.3 Correlation and redundancy analysis

Highly correlated and redundant metrics can prevent us from measuring the effect
of each metric. Therefore, we conduct correlation and redundancy analyses to
remove highly correlated and redundant metrics.

We apply the Spearman rank correlation because it can handle non-normally
distributed data [26]. We use the cor() function in R to calculate the correlation
coefficient. If the correlation coefficient between two metrics is larger than or equal
to 0.7, we consider the pair of metrics to be highly correlated and we select only
one of the metrics. We intend to train and test LtR models on each project, which
requires us to remove highly correlated metrics for each project. Instead obtaining
the correlated pairs of metrics and select metrics for all projects manually, we run
the Spearman rank correlation for each pair of metrics in all projects and record all
possible highly correlated pairs. Then, the first and the second authors discussed
which metric should be kept in the occurrence of every possible correlation pair.
Through several discussions and after reaching consensus, we produced a decision
table as shown in Appendix A. For example, when src churn and ccn addad are
highly correlated, we choose to keep ccn added because we consider that the com-
plexity of code is more important than the code churns. When building the LtR
models for our projects, our approach reads the table and automatically chooses
the metrics based on our produced decision table.

After performing the correlation analysis, we conduct a redundancy analysis on
the metrics using the redun() function of the R rms package. Redundant metrics
can be explained by other metrics in the data and do not aggregate values for
models. We find that there exist no redundant metrics in our data.

3.4 PRs labeling

Before training and testing the LtR models, the relevance between each PR and
a query (e.g., a query refers to searching for the PRs that are most likely to be
quickly merged, more details in Section 4.1) is described by (i) a label based on
the decision made about the PR and (ii) the time taken to make the decision (as
shown in Figure 4). Through our preliminary study, we find that the median time
for reviewers to review PRs in each project ranges from 1.15 hours to 448.7 hours.
We use the median time to review the PRs of a project as the threshold to split
PRs into quickly reviewed PRs and slowly reviewed PRs. We use the median value
because it is more robust to outliers [27]. Specifically, we use three relevance levels
in querying PRs that are the most likely to be quickly merged:

– Relevance level 0 indicates PRs that are rejected.
– Relevance level 1 indicates PRs that take a long time to review and merge.
– Relevance level 2 indicates PRs that are quickly reviewed and merged.

Similarly,we use three relevance levels for identifying the PRs that are the most
likely to be quickly rejected:

– Relevance level 0 indicates PRs that can be merged.
– Relevance level 1 designates PRs that are rejected but take a long time to be

reviewed.
– Relevance level 2 specifies that a PR can be quickly rejected.

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 11

The number of PRs in each label is shown in Table 1.

Table 1 The number of PRs with different relevance levels. For querying the quickly merged
PRs, (i) 0 indicates rejected PRs, (ii) 1 indicates slowly merged PRs and (iii) 2 indicates
quickly merged PRs. For querying the quickly rejected PRs, (i) 0 indicates merged PRs, (ii) 1
indicates slowly rejected PRs and (iii) 2 indicates quickly rejected PRs.

Querying the quickly merged PRs Querying the quickly rejected PRs
Relevance level 0 26060 74060
Relevance level 1 35140 15322
Relevance level 2 38920 10738

4 Results

In this section, we describe the three research questions. We present the motivation,
approach and results for each question.

4.1 RQ1. Which learning-to-rank algorithm is the most suitable for ranking PRs?

Motivation. To optimize the performance of our approach, it is crucial to select
and deploy the most suitable LtR algorithm. We use the learning-to-rank frame-
work, called RankLib2, which consists of a set of LtR algorithms. Given the several
options of LtR algorithms, it is important to evaluate the best LtR algorithm that
suits our goal.

Fig. 4 An overview of our ranking approach.

Approach. We use LtR models to rank PRs that allow a reviewer to make
speedy decisions. LtR models have been widely applied in the information retrieval
field [28] [29]. LtR models rank a set of documents (e.g., PRs) based on their
relevance to a given query (e.g., PRs that can be quickly merged to the project).
LtR algorithms are supervised approaches and, as such, they have training and
testing phases. The overall steps of our approach for ranking PRs are shown in
Figure 4.

2 https://sourceforge.net/p/lemur/wiki/RankLib/

12 Guoliang Zhao et al.

4.1.1 LtR algorithm selection

There are three categories of LtR algorithms based on their training process: (1)
pointwise algorithms compute the absolute relevance score for each PR; (2) pair-
wise algorithms transform the ranking problem into a classification problem to
decide which PR is more likely to receive a quick decision in a given pair of PRs;
and (3) listwise algorithms take ranked lists of PRs as instances in training phase
and learn the ranking model. In our approach, we explore 6 well-known and widely
adopted pairwise (RankNet [30] and RankBoost [31]) and listwise (MART [32], Co-
ordinate Ascent [33], ListNet [34] and random forest [35]) LtR algorithms. We ex-
clude pointwise algorithms, since pairwise algorithms and listwise algorithms have
been empirically proved to consistently outperform pointwise LtR algorithms [36].

4.1.2 Training phase

Every LtR model is trained using a set of queries Q = {q1, q2, . . . , qn} and their
related set of documents (i.e., studied PRs) D = {d1, d2, . . . , dn}. More specifically,
a query refers to searching for the PRs that are most likely to be quickly merged.
Each document d is represented by one studied PR, P = {p1, p2, . . . , pn}. For
each query q, the related PRs are labeled with their relevance to query q. During
the training process, for each query, the LtR algorithm computes the relevance
between each PR and the query using the metric vector Vs of the PR. In our
study, we use one query (i.e., q1) to identify PRs that are most likely to be quickly
merged and another query (i.e., q2) to identify PRs that are most likely to be
quickly rejected. We define d, r, q1, q2 and Vs as follows:

– Document d is a PR.
– Relevance r is the likelihood of d being quickly merged or rejected (depending

on the query).
– Query q1 is a query to identify the PRs that are the most likely to be quickly

merged.
– Query q2 queries which PRs are the most likely to be quickly rejected.
– Metric vector Vs denotes a set of metrics used to build the LtR models as

discussed in Section 3.2.

4.1.3 Testing phase

We measure the performance of the LtR model for ranking PRs that are most
likely to be quickly merged and rejected separately, since ranking quickly merged
and rejected PRs are trained using different sets of queries.

Given that software projects evolve over time [37], we need to consider the
time-sensitive nature of our data. For example, we cannot test models using PRs
that were closed before the PRs that we use in our training data (i.e., predicting
the past). For this reason, we use a time-sensitive validation approach to evaluate
the LtR models as shown in Figure 5. First, we sort our PRs based on their closing
time. Then, we split our data into 5 folds F = {f1, f2, . . . , f5}. Each fi is split
into a training set ti and a testing set τi. In the first iteration, we train a ranking
model using the t1 training set of PRs, while we use the τ1 testing set as a query
to test the model. In the second iteration, a new ranking model is trained using

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 13

the t1, τ1, t2 sets (i.e., all PRs before τ2) and tested using the τ2 set as a query.
This process continues until a ranking model is tested upon the τ5 set. Finally, we
compute the average performance of the ranking models in these five iterations.

Fig. 5 An overview of our time-sensitive evaluation

Table 2 An example of the ranking result of three PRs of the MovingBlocks/Terasology
project for query q1 : quickly merged PRs

Rank Pull request Relevance
1 Develop - Block Manifestor cleanup + some. . . quickly merged
2 PullRequest - Cleanup rejected
3 AddedEclipse-specific content to .gitignore. . . slowly merged

Table 3 The optimal rank of PRs in Table 2

Rank Pull request Relevance
1 Develop - Block Manifestor cleanup + some. . . quickly merged
2 AddedEclipse-specific content to .gitignore. . . slowly merged
3 PullRequest - Cleanup rejected

To evaluate the performance of an LtR model, we use the normalized dis-
counted cumulative gain at position k (NDCG@k), which is a well-adapted mea-
sure of ranking quality. NDCG is a weighted sum of degree of relevance of the
ranked PRs [38]. Search engine systems also use a cut-off top-k version of NDCG,
referred to as NDCG@k [38]. We opt for using NDCG@k because the precision
at position k (P@k) is not suitable for multiple labels [39]. In addition, Recall does
not suit our case because hundreds of open PRs are likely to be merged quickly,
while in our approach we rank only 20 PRs for reviewers to work on.

14 Guoliang Zhao et al.

We first calculate the discounted cumulative gain at position k (DCG@k) [35].
DCG has an explicit position discount factor in its definition (i.e., the 1

log2 (1+j)

as shown in equation 2). PRs with a high relevance r but having a low ranking
would negatively affect the DCG metric. DCG@k is calculated as follows [35]:

DCG@k =
k∑

j=1

2rj − 1

log2 (1 + j)
(2)

where rj is the relevance label of a PR in the jth position in the ranking list.
For the example shown in Table 2, DCG@1 = 3, DCG@2 = 3, DCG@3 = 3.5.

Then, the DCG@k is normalized using the optimal DCG@k value (IDCG@k) to
get the NDCG@k as shown in Equation 3.

NDCG@k =
DCG@k

IDCG@k
(3)

For the example shown in Table 2, the optimal ranking is shown in Table 3, and

IDCG@3 = 22−1
log2 (1+1) + 21−1

log2 (1+2) + 20−1
log2 (1+3) = 3.63 and NDCG@3 = DCG@3

IDCG@3 =
3.5
3.63 = 0.96.

We apply each LtR algorithm to rank the PRs of each project following the
time-sensitive validation method as shown in Figure 5. Then, we compute the
NDCG@k metric for k = 1, . . . , 20 for each project. After applying one LtR
algorithm to all projects, we obtain a distribution of the NDCG metric at each
ranking position k (1,. . . ,20). For each ranking position k, we draw a beanplot3

to show the performance of each algorithm at position k (e.g., the beanplot of
NDCG@1 of RankNet algorithm as shown in Figure 6).

To compare the performance of different LtR models in the same ranking k
position, we use the Cliff’s delta to measure the magnitude of differences between
performance distributions of LtR models at the same position. The larger the delta
value, the larger the difference between two distributions. We use the cliff.delta()
method of the effsize package in R to calculate the Cliff’s delta.

Results. The random forest model outperforms the other LtR models
in ranking both quickly merged PRs and quickly rejected PRs. As shown
in Figure 6, for ranking quickly merged PRs, the median NDCG@k values of the
random forest model is almost 0.8, while the median values of the other models
are all around 0.6. In addition, the magnitude of the differences in performance
between the random forest model and the other models are small and medium in
all the k positions as shown in Table 4.

Table 4 The median Cliff’s Delta estimate of all k positions and the Cliff’s Delta magnitude

Algorithm Cliff’s Delta Estimate Cliff’s Delta Magnitude
RankNet 0.334 medium
RankBoost 0.198 small
Coordinate Ascent 0.341 medium
MART 0.451 medium
ListNext 0.350 medium

3 https://cran.r-project.org/web/packages/beanplot/vignettes/beanplot.pdf

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

RankNet

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

RankBoost

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Coordinate Ascent

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

MART

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

ListNet

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests

ranking position

N
D

C
G

Fig. 6 The performance of the LtR models to rank PRs that can be quickly merged

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

RankNet

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

RankBoost

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Coordinate Ascent

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

MART

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

ListNet

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests

ranking position

N
D

C
G

Fig. 7 The performance of the LtR models to rank PRs that can be quickly rejected

16 Guoliang Zhao et al.

Regarding ranking quickly rejected PRs, the performances of the six models are
not promising as shown in Figure 7. The most probable reason is that the ranking
models are not well trained, since the quickly rejected PRs only account for 10%
of the total set of PRs as shown in Table 1. Another possible reason is that there
may still exist some noise in the rejected PRs in our dataset although we have ex-
cluded projects with a merge ratio lower than 0.4. Nevertheless, the random forest
model performs better than the other 5 models when ranking quickly rejected PRs.

Summary of RQ1: The random forest model performs the best when rank-
ing PRs based on their likelihood of being quickly merged.

4.2 RQ2. Is our approach effective to rank PRs that can receive decisions quickly?

Motivation. After selecting the best performing LtR model in our approach, we
need to verify the effectiveness of our proposed LtR model by comparing it with
the existing prioritizing criteria that are studied by Gousios et al. [5].

Approach. There is no universal conclusion on how reviewers prioritize PRs in
practice. Nevertheless, Gousios et al. [5] observed that there are two well-adapted
prioritizing criteria among reviewers through their large-scale qualitative study [5].
The two criteria are listed as follows:

– First-in-first-out. As mentioned in their research, many reviewers prefer a first-
in-first-out prioritization approach to select the PRs [5], based on the age of
the PRs. In this criterion, reviewers would first focus on the PRs that come
earlier than others.

– Small-size-first. Besides the age of the PR, reviewers use the size of the patch
(source code churn of the PRs) to quickly review small and easy-to-review
contributions and process them first.

We build two baselines based on the aforementioned two criteria, i.e., the first-
in-first-out (FIFO) baseline and the small-size-first baseline.

We test the two baselines using the same time-sensitive approach that we use to
test the performance of the random forest model (see the approach section of RQ1).
Similarly, we measure the performance of each baseline to rank PRs that are the
most likely to be quickly merged and rejected separately. Next, we use Equation 3
to calculate the NDCG@k metric. Similar to Section 4.1, after running the two
baselines in each project, we use beanplots and Cliff’s delta measures to show the
performance of two baselines and compare them with the random forest model.

Results. The random forest model outperforms both the FIFO and
small-size-first baselines for ranking the PRs that can be either quickly
merged or quickly rejected. Figures 8 and 9 show the performance of the
random forest model, the FIFO baseline and small-size-first baseline for ranking
the PRs that can receive quick decisions. We observe a large Cliff’s delta (median
Cliff’s Delta estimate = 0.60) between the random forest model and the FIFO
baseline. Thought the Cliff’s delta between the random forest model and the small-
size-first baseline is small (median Cliff’s Delta estimate = 0.18), the random forest
model can help reviewers to merge more contributions in a shorter time as shown
in the following ranking example.

To show the application of our ranking approach, we run the random forest LtR
model and the small-size-first baseline on the same set of PRs of the libgdx/libgdx

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 17

project. The libgdx/libgdx project has been attracting external contributions since
2012. There are more than 70 open PRs waiting for reviewers to review every day
in this project. The ranking list of the random forest LtR model and the ranking
list of the small-size-first baseline are shown in Tables 5 and 6, respectively. Based
on the top 10 PRs in both tables, we can observe that our LtR approach ranks
PRs that can be merged in a shorter time at the top positions when compared
with the small-size-first approach.

Table 5 Example ranking top 10 PRs results of the LtR random forest model

Position Pull request label
Observed review
time (hours)

1 Move DebugDrawer 2 0.013
2 Fix linker flags. . . 2 0.628
3 error msg for. . . 2 10.416
4 Javadoc minor typos 2 0.518
5 Update CHANGES 2 1.02
6 Everyone misspells. . . 2 0.035
7 iOS: Force linked. . . 1 50.233
8 Implement material. . . 2 0.001
9 Move gwtVersion to. . . 2 0.041
10 Update fetch.xml 2 0.037

Table 6 Example ranking top 10 PRs results of the small-size-first baseline

Position Pull request label
Observed review
time (hours)

1 Removed Unused variable. . . 2 4.988
2 Merge pull request #2. . . 0 0.011
3 update 0 0.007
4 Merge pull request #1. . . 0 0.028
5 Very Minor Update. . . 2 8.424
6 Gradle: Enforced OpenGL. . . 2 12.169
7 Update CHANGES 2 0.054
8 MathUtils: Fixed isEqual. . . 2 0.157
9 Stop IDE’s thinking. . . 0 2.483
10 Everyone misspells. . . 2 2.483

We also observe that the small-size-first baseline performs as good as the other
LtR models (e.g., RankNet, RankBoost and ListNet) when ranking the PRs that
can be quickly merged or rejected. This observation suggests that the small-size-
first baseline is, to a certain extent, optimized for ranking PRs that can receive
quick decisions. Breaking large PRs into several smaller PRs (whenever possible)
could increase the likelihood of quickly deciding on a PR.

Summary of RQ2: The LtR using the random forest model outperforms
the FIFO and small-size-first baselines when ranking PRs that can be
quickly merged or rejected. By considering the high performance of the
LtR model, reviewers could use the model to aid them in merging more
contributions in a shorter time.

18 Guoliang Zhao et al.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

first in first out

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Small first

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests

ranking position

N
D

C
G

Fig. 8 The performance of our LtR approach and two baselines to rank PRs that can be
quickly merged.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

first in first out

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Small first

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests

ranking position

N
D

C
G

Fig. 9 The performance of our LtR approach and two baselines to rank PRs that can be
quickly rejected.

4.3 RQ3. What are the most significant metrics that affect the ranking?

Motivation. In our experiment, we leverage many metrics that capture different
aspects of a PR. In this research question, we investigate the effect of each metric
on ranking the PRs that can be quickly merged and observe the most influential
metrics in the LtR model. This is important to better understand how a PR can
receive a decision more quickly with a small set of metrics that have the most
significant impact on the ranking.

Approach. To test the effect of each metric, we first exclude a given metric
from the training dataset. Next, we build the random forest model on the new
dataset and test its performance. Finally, we measure the difference in the perfor-
mance in terms of NDCG@k regarding ranking PRs that can be quickly reviewed
of the ranking model without the metric. The larger the drop in the performance,
the higher the effect of the tested metric in the LtR model.

Results. The metrics related to the social connection of a contributor
are the most significant metrics. Table 7 shows the effects of each metric. The
percentages in Table 7 show the decreases in the performance measure NDCG@k
of the random forest model after removing the tested metric.

Without using soical distance and followers, the performance of the random
forest model decreases the most (4.13% and 3.20% off in the first position respec-
tively). Both soical distance and followers are related to the social connections of

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 19

a contributor. The first two most important metrics suggest that the social con-
nections of the contributor play an influential role in the decision making process
of PRs. Our approach could be used to attract the attention of reviewers when
a PR is submitted by a contributor with a good social connection. Another two
important metrics are num commits and ccn deleted, which represent the scale of
the PRs and the source code quality of PRs respectively, as we explained in Sec-
tion 3.2. We also find that the experience of the contributors is not as significant
as the social connection of contributors and source code quality of PRs, especially
for prior interaction, based on the negative values shown in Table 7. When we
remove prior interaction from the LtR model, the performance of the LtR model
increases by 3.26% at the first position.

In addition, we observe that description length and readability are important,
which suggests that the title and description texts of PRs have an important effect
in the reviewing process. The negative effect of src churn on LtR model indicates
that the churn in PRs is not an important prioritization criterion in all of the cases
for which a quick decision could be taken.

GitHub contributors can leverage the important metrics found in our LtR
model to attract the reviewers’ attention. For example, a new external contribu-
tor should seek interactions with reviewers in the same project to build a social
connection with the reviewers. The external contributor is encouraged to follow
reviewers on GitHub and comment on PRs. By doing so, the external contributor
may engage in discussions with reviewers before submitting a PR to the project.
In addition, contributors should write meaningful descriptions, titles and commits
messages of PRs, so that reviewers feel inclined to work on the submissions of the
contributors.

Summary of RQ3: The social connection of a contributor is more important
than the source code quality of a PR and the experience of the contributor.
And reviewers should not only consider the source code churn of the PRs
as a single criterion for prioritizing reviews.

Table 7 Effects of each ranking metric on PRs.

Test metric k=1 k=3 k=5
social distance 4.13% 2.67% 2.17%
followers 3.20% 2.34% 1.99%
num commits 1.96% 0.00% 0.04%
description length 1.82% 2.08% 2.00%
ccn deleted 1.36% 0.35% 0.39%
readability 1.19% 0.65% 1.41%
commit file changed 0.09% 2.05% 1.57%
bug fix 0.47% 0.00% 0.72%
comments added 0.46% -0.08% 1.37%
contributor succ rate -0.04% 0.05% 1.00%
status -0.27% -0.82% 0.17%
src churn -0.62% 0.18% -0.25%
ccn added -1.17% -0.86% -0.24%
test churn -1.22% -0.38% -0.18%
files changed -1.85% 0.04% -0.02%
prior interaction -3.26% -1.45% -0.91%

20 Guoliang Zhao et al.

4.4 RQ4. How do GitHub reviewers perceive the usefulness of our approach?

Motivation. The goal of our approach is to help reviewers handle the increasing
workload of PRs. Therefore, it is important to understand how reviewers perceive
the usefulness of our approach. We also aim to investigate whether our approach
can complement the existing practices for reviewing PRs.

Approach. We first collect reviewers that have e-mail addresses information on
GitHub. We include reviewers from all projects on GitHub regardless of whether
their projects are included in our experiment projects set to have a large scale
generalized responses. We find 2,225 reviewers on GitHub that have e-mail ad-
dresses information and we send our survey to them. The survey consists of 4
open ended questions and 1 Likert scale question as shown in Table 8. The Likert
scale question asks reviewers to rate the perceived usefulness of our approach from
1 (not useful) to score 5 (extremely useful). Question 2 asks reviewers the reasons
as to why our approach can be useful. In Question 4, we ask reviewers whether
our approach complements the existing prioritization approaches (i.e., FIFO and
small-size-first). After designing our survey, we send it to code reviewers. Our e-
mail template is available in Appendix B. To compensate reviewers for their time,
we offer 10$ amazon gift cards to 20% of the reviewers who participated in our sur-
vey. Unfortunately, we could not reach 351 reviewers due to the obsolete e-mails.
We receive 74 responses to our survey (our responses rate is 3.7% after excluding
the 351 reviewers whose e-mail addresses are not reachable).

To obtain the overall perception of reviewers regarding the usefulness of our
approach, we calculate the percentage of each score that we receive in Question
3 as shown in Figure 10. For the open ended Questions 2 and 4, we manually
analyze all responses of reviewers and summarize the common reasons as to why
our approach can be useful or complement the existing prioritization approaches
(see Table 9). We also summarize the reviewers’ concerns about our approach in
Table 10.

Table 8 Description of the questions of our survey

Question Type
1. How do you choose a pull request to review when you are
facing several open pull requests?

Open ended

2. We are developing an approach to recommend reviewers with
pull requests that are likely be reviewed in a short time. For example,
you open the project page and you have the possibility of viewing
a list of pull requests that are likely to be reviewed in a short time
(i.e., regardless of size or topic). Do you think our approach
would be useful? And why?

Open ended

3. Please provide how useful you think this approach would be in a
scale from 1 (not useful) to score 5 (extremely useful)?

Likert scale

4. Prior research mentioned that developers prioritize pull
requests based on the size of the patches and the age of the pull requests.
Compared to these approaches, do you think that prioritizing pull
requests based on their time to be reviewed (i.e., our approach) could
complement them? And why?

Open ended

5. Do you have suggestions to improve the prioritization of pull requests
in general?

Open ended

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 21

Table 9 Summary of the reasons on the usefulness of our approach

Reasons Number of reviewers
1. Our approach helps reviewers to merge more PRs in a limited time 18/74
2. Our approach helps reviewers to prioritize potentially quick reviews
besides the size and age of PRs

24/74

3. Our approach prevents several PRs from being blocked by the review of
a single time-consuming PR

5/74

Table 10 Summary of the reviewers’ concerns about our approach

Concerns Number of reviewers
1. Our approach recommends PRs based on their possibility of being
quickly reviewed instead of their usefulness or urgency

8/74

2. Our approach is incompatible with the specific settings of a project 3/74

Results. Overall, the usefulness of our approach is acknowledged by
code reviewers on GitHub. As shown in Figure 10, 42% and 38% of reviewers
who participated in our survey mark our approach as moderately useful and useful
respectively. 7% of reviewers report that our approach is very useful. Finally, we
receive no negative response stating that our approach is not useful. As shown in
Table 9, 18 reviewers state that our approach can be useful since our approach
enables them to merge more PRs in a limited time. As R2 and R72 state: “In
some cases e.g., at the end of the day or when short of time, getting some pull
requests out of the way keeps development work going on” and “I want the time
spent reviewing to have some result, rather than spending a lot of time on one large
PR that might turn out to be the wrong approach or gets abandoned”.

Fig. 10 The evaluation result of the usefulness of our approach.

24 reviewers mention that our approach can complement their existing working
environment by helping them to prioritize potentially quick reviews besides the size
and age of PRs. As R4, R24, and R45 mention in: “Your approach can speed up a
way how a reviewer will choose a right pull request without reading all existing pull
request one by one.”, “I would be able to choose the availability I have, and which
factors I prefer at that moment (if I want low hanging fruits because I am short
in time, for example)” and “I think it would complement the other prioritization

22 Guoliang Zhao et al.

criteria. Clearing off quick PRs is a good way to lower the cognitive load of having
too many PRs open. It also improves the contributor experience and encourages
concise, easy to review PRs.”

As our approach recommends PRs that can be quickly reviewed first, 5 review-
ers also think that our approach ensures that several PRs would not be blocked
by the review of a single time-consuming PR. As R17 and R27 state: “That would
be helpful because I think it’d be best to review pull requests that are quicker before
pull requests that are harder. That would ensure that several requests aren’t blocked
by the review of a single time-consuming pull request” and “Reviewing those PRs
quickly may unblock other team members or tasks”.

There are some concerns raised by reviewers as shown in Table 10. The most
common concern is recommending PRs solely based on their possibility of being
reviewed in a short time. If reviewing time was the single criterion for prioritizing
PRs, factors, such as usefulness or urgency (e.g., a key bug fix) would be compro-
mised. As R55 and R71 mention the following: “whilst it may be useful to reviewers,
it could be damaging for projects. Priority should be based on usefulness” and “A
scheduling optimization strategy like this will lead to a Larger number of PRs being
reviewed, but may postpone the review of more complex PRs. If those PRs are crit-
ical, the proposed strategy may starve them”. We acknowledge that the mentioned
concerns are valid and that is why our approach aims to complement the exist-
ing PRs prioritization criteria instead of replacing them. Reviewers can certainly
follow their own prioritization rules and focus on PRs with a higher priority at
first (e.g., PRs fixing critical bugs or implementing customer requested features).
Moreover, as discussed in Section 5.2, we verify that our approach mostly recom-
mends PRs that are related to software enhancements and bug fix rather than the
trivial PRs (e.g., documentation PRs).

Other concerns are related to the specific settings of a project. For example,
R15 mentioned: “For us, this approach is not useful. Business priority is always
most important”.

In Question 5, we ask reviewers to provide suggestions to improve the prioriti-
zation of PRs. Reviewers suggest that the types of PRs can be used to prioritize
PRs. As R63 mention the following: “For example, cosmetic changes, bug fixes,
functionality changes, refactor, and documentation changes may all have differ-
ent priorities, depending on what the project managers deem most important”. In
addition, the reviewers suggest other aspects of PRs that can be leveraged to pri-
oritize PRs, such as the labels of PRs, the number of times it takes until developers
correct requested changes of reviewers, and the number of merge conflicts a PR
causes.

5 Discussion

In this section, we discuss the soundness of our threshold to exclude noise PRs.
Next, we discuss whether the PRs that our approach recommends are in fact
useful and not trivial (i.e., simple modifications to documentation). We also discuss
whether our approach is suitable to reviewers of diverse levels of experience.

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 23

5.1 Threshold to remove noise PRs

We conduct a sensitivity analysis to verify that the merge ratio threshold of 0.4
enables us to eliminate most of wrongly labeled PRs and keep correctly labeled
PRs. We apply three different merge ratio thresholds (i.e., 0.4, 0.5, and 0.6). We do
not include threshold of 0.7 because the normal merge ratio of PRs is around 0.7
and using 0.7 would exclude projects where the PRs are correctly labeled [10]. For
each PR merge ratio threshold, we conduct the same experiment and evaluation
approach covered in Sections 3 and 4. Figures 11 and 12 show the performance of
our model of using different thresholds to exclude projects where PRs are incor-
rectly labeled.

In Figures 11 and 12, we observe that the performance of our approach keeps
at the same level when we increase the merge ratio threshold. The Cliff’s difference
delta is negligible between the performances. The performance of recommending
quickly merged PRs increases slightly (median Cliff’s Delta estimate = 0.05) by
raising the PRs merge ratio threshold, while the performance of recommending
quickly closed PRs decreases slightly (median Cliff’s Delta estimate = 0.04). A
possible reason for the slight change in the performance is that a higher merge
ratio threshold can exclude more wrongly labeled PRs, but also remove correctly
labeled closed PRs. Therefore, we infer that the merge ratio threshold of 0.4 is able
to eliminate most of wrongly labeled PRs while keeping correctly labeled PRs.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests using threshold 0.4

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests using threshold 0.5

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests using threshold 0.6

ranking position

N
D

C
G

Fig. 11 The performance of our LtR approach to rank PRs that can be quickly merged under
three different thresholds.

5.2 Types of the recommended PRs

The paramount goal of code reviewing is to maintain or improve the quality of
the projects [5]. Therefore, it is critical to examine the impact of using our ap-
proach on improving the quality of projects. If our approach only recommends
PRs that modify only project documentation, the benefit of improving the quality
of a project is trivial compared with recommending bug fixing or feature imple-
mentation PRs. Although reviewers can always follow their own priority of PRs,
our approach would not be useful to reviewers if we only recommended trivial PRs
(e.g., documentation PRs).

24 Guoliang Zhao et al.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests using threshold 0.4

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests using threshold 0.5

ranking position

N
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 12 15 18

Random Forests using threshold 0.6

ranking position

N
D

C
G

Fig. 12 The performance of our LtR approach to rank PRs that can be quickly rejected under
three different thresholds.

Our approach recommends a total number of 1,480 PRs among the 74 projects
in the experiment project set. We take a statistical sample of 305 PRs with 95%
confidence level and with a 5% confidence interval. We randomly select 305 PRs
from the entire population of recommended PRs. In prior research [40], differ-
ent categories for commits are proposed to group commits. In our approach, we
focus on PRs which consist of commits. Thus, we adopt the commits categories
mentioned in research [40] to classify our PRs. We classify a PR based on the
information contained in the description and title. We manually classify each PR
in the sample into one of the types shown in Table 11. The number and percentage
of PRs in each type are shown in Table 12.

Table 11 Types of pull requests [40]

Types of Pull Requests Description
Bug fix A pull request fixes one or more bugs.

Build
A pull request focuses on changing the build or configuration
system flies (e.g., pom.xml files).

Clean up
A pull request cleans up the unused attributes,
methods, classes.

Documentation
A pull request is designed to update documentation of a
system (e.g., method comments).

Feature implementation A pull request adds or implements a new feature.

Enhancement
A pull request performs activities common during a maintenance
cycle (different from bug fixes, yet, not quite as radical as
adding new features).

Test A Pull request related to the files that are required for testing.

Others
A Pull request related to language translation, platform specific,
token rename and source code refactoring.

Table 12 indicates that the majority of recommended PRs are related to en-
hancement, bug fixing, and new feature implementation. Conversely, documenta-
tion PRs only account for 7% of PRs recommended by our approach. A possible
reason for the low percentage of documentation PRs is that our LtR model is built
on the previous reviewed PRs. Reviewers usually prefer to review enhancement,
bug fixing, and new feature implementation PRs rather than trivial PRs (i.e.,
PRs that do not aggregate much value for the project). Therefore, we conclude

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 25

that PRs recommended by our approach could help reviewers bring more positive
contributions to the project and improve the quality of projects.

Table 12 The number of pull requests in each type

Pull request categories Number of pull requests Percentage of pull requests
Enhancement 78 26%
Bug fix 65 22%
Feature implementation 42 14%
Build 31 10%
Test 28 9%
Documentation 22 7%
Clean up 12 4%
Others 24 8%

5.3 PRs reviewed by reviewers of different experience levels

In this section, we check whether reviewers having different experience levels are
interested in various types of PRs. This investigation is important because it checks
whether our approach is suitable for reviewers of diverse levels of experience. For
example, new reviewers may focus only on simple reviews (i.e., documentation or
clean up PRs), while experienced reviewers are more willing to review complex
PRs.

For each PR within the sample that we use in Section 5.2, we measure the
experience of the reviewers who reviewed the PR. We select the following three
metrics to measure the experience of reviewers:

– prs reviewed. The number of PRs that one reviewer has reviewed before re-
viewing a specific PR.

– prs submitted. The number of PRs that one reviewer has submitted to the
project before reviewing a specific PR.

– commits. The number of commits that one reviewer has preformed before re-
viewing a specific PR.

We extract these three experience metrics by querying our collected dataset as
explained in Section 3.1. Next, we group the experience levels of reviewers based
on the type of PRs. After obtaining a set of experience levels for the reviewers
of each PR type, we use the standard deviation to measure the variation on the
experience levels (shown in Table 13).

We observe that, the standard deviation is high (the smallest value is 119.73)
for each type of PR, which indicates that all PRs of each type are reviewed by
reviewers with different levels of experience. Besides standard deviation, we also
perform a Kruskal-Wallis H test [41] to test whether the experience levels of re-
viewers for different types of PRs have similar values. The null and alternative
hypotheses are:

– null hypothesis H0: The experience levels of reviewers of different types of PRs
are similar.

– alternative hypothesis H1: The experience levels of reviewers of different types
of PRs are significantly different.

26 Guoliang Zhao et al.

Based on the result of the Kruskal-Wallis H test shown in Table 14, the p-values
of the three experience metrics are 0.31, 0.80 and 0.90, which are far above 0.05.
Thus, we cannot reject the null hypothesis that all types of PRs are reviewed by
reviewers of all levels of experience.

Therefore, based on the experiment results of standard deviation and Kruskal-
Wallis H test, we observe that there is no apparent relationship between the ex-
perience levels of reviewers and the types of PRs that they are willing to review.

Table 13 The standard deviation of experiences of reviewers

Types of pull request
Standard deviation of experience of reviewers
Measured in
prs reviewed

Measured in
prs submitted

Measured in
commits

Enhancement 295.25 225.32 818.59
Bug fix 295.19 177.31 641.26
Feature implementation 278.98 143.49 709.07
Build 325.42 237.34 725.38
Test 317.27 124.12 474.32
Documentation 274.98 215.52 894.90
Clean up 140.00 119.73 515.61
Others 253.77 207.45 851.70

Table 14 The result of Kruskal-Wallis H test

Reviewers experiences p-value
Measured in prs reviewed 0.31
Measured in prs submitted 0.90
Measured in commits 0.80

6 Threats to validity

In this section, we discuss the threats to the validity of our study.
Threats to external validity concern whether the results of our approach

are able to be generalized for other situations. In our experiment, we include PRs
from 74 GitHub Java projects. We filter out projects to ensure that our analyzed
projects are well-developed and popular among GitHub contributors. However,
projects in other programming languages (e.g., Python and Javascript) may have
different reviewing process for PRs, and our findings might not hold true for non-
Java projects [6]. For example, the metrics that capture the characteristics of
source code might be important for reviewing PRs in other language projects. To
address this threat, further research including other language projects is necessary
to obtain more generalized results.

Threats to internal validity concern the uncontrolled factors that may af-
fect the experiment results. One of the internal threats to our results is that we
assume that the behavior of reviewers does not change over time. As Gousios et
al. [5] and Steinmacher et al. [6] mentioned, checking whether PRs follow the cur-
rent developing goal of a project is the top priority for reviewers when evaluating

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 27

PRs. Also, it is possible that, at different stages of a project, the project enforces
different developing policies (e.g., reviewers may focus more on bug fixing contribu-
tions than feature enhancement when the release time is approaching). However, it
is challenging to capture all of these metrics (i.e., the changing goals of the project)
without closely contacting the core contributors of each project. In spite of this
challenge, we attempt to cover metrics from four dimensions: source code metrics,
social connection metrics, experience metrics, and textual information metrics.
Besides the changing developing policies, different reviewers may have different
expertise. Ideally, our approach should be customized to recommend PRs based
on the preferences of each reviewer. However, the majority of PRs in a project are
reviewed by a few numbers of reviewers [16], which means we cannot obtain enough
reviewing history for most reviewers. It is problematic to train a LtR model on
each reviewer. Therefore, we only use objective metrics related to PRs to build a
generalized approach that can work for all reviewers. Our goal is not to replace re-
viewers’ prioritization criteria of PRs, but rather to be another tool at their hands
to improve their working environment. Additionally, there may exist noise (i.e.,
incorrectly labeled PRs) in the rejected PRs, which can have a negative impact
on the performance of the LtR models as mentioned in Section 4.1.

Threats to construct validity concern whether the setup and measurement
in the study reflect real-world situations. In our study, we treat the time interval
between the submitted time of a PR and the close time of the PR as the reviewing
time. However, the time interval is a rough estimation of the actual time spent by
reviewers on evaluating the PRs. In practice, there is always a delay for reviewers
to notice the PRs after its submission and the delay should be counted in the
reviewing time. Unfortunately, there is no information indicating the exact time
when a reviewer started reviewing a PR. On the other hand, the delay time might
reflect the priority of PRs. The longer a PR waits, the lower the priority of that
PR might be. Therefore, we find it reasonable to use the overall time interval as
an approximation of reviewing time, which is used to separate the studied PRs
into quickly reviewed PRs and slowly reviewed PRs. In addition, it is difficult to
quantify the exact amount of time saved from reviewers due to the unknown delay
for reviewers to notice the PRs. Nevertheless, we observed that our approach can
be useful for reviewers to review more PRs within a limited time.

7 Conclusion

The pull-based development model has become increasingly popular in collabora-
tive software development platforms (e.g., GitHub, Gitlab and Bitbucket). In this
development model, reviewers play an important role in maintaining the quality
of their open source projects. We observe that the workload for reviewers tends
to increase while the number of decisions made on PRs remains roughly the same
over time.

In this paper, we propose a LtR model to recommend quick-to-review PRs to
help reviewers to make more speedy decisions on PRs during their limited working
time. We summarize the major contributions of this paper as follows:

– We apply more metrics in the context of modeling PRs. We use metrics
to capture the quality of the source code and textual information of PRs, such
as the source code cyclomatic complexity, the number of comments in the

28 Guoliang Zhao et al.

source code, and the readability of the title and description of PRs. Besides,
we integrate different aspects of metrics to build LtR models (e.g., metrics
about PRs themselves and metrics reflecting the contributor’s experience and
social connections).

– We test the effectiveness of different LtR algorithms on ranking PRs.
Our results suggest that the random forest model performs better than other
five LtR models (RankNet, RankBoost, Coordinate Ascent, MART, and List-
Net). The random forest model also outperforms two baseline models (i.e., the
first-in-first-out baseline and the small-size-first baseline).

– We observe that the social connection metrics affect the ranking the
most, while the source code quality metrics of PRs and experience metrics of
contributors are less important.

– The usefulness of our approach has been positively perceived by
GitHub code reviewers. Reviewers believe that our approach allows them to
merge more PRs in a limited time and ensures that several PRs are not blocked
by reviewing a single time-consuming PR. Reviewers also mention that our
approach provides reviewers more options to prioritize PRs by complementing
the other two prioritization criteria (i.e., FIFO and small-size-first).

In the future, we intend to include more projects written in different program-
ming languages. Next, we plan to explore other machine learning techniques to
recommend PRs for reviewers. We also intend to categorize reviewers into sev-
eral groups and apply different PRs recommendation strategy for each group of
reviewers.

References

1. G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and challenges in pull-
based development: The contributor’s perspective,” in Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on. IEEE, 2016, pp. 285–296.

2. C. Bird, A. Gourley, and P. Devanbu, “Detecting patch submission and acceptance in
oss projects,” in Proceedings of the Fourth International Workshop on Mining Software
Repositories. IEEE Computer Society, 2007, p. 26.

3. R. Padhye, S. Mani, and V. S. Sinha, “A study of external community contribution to
open-source projects on github,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 332–335.

4. B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and productivity
outcomes relating to continuous integration in github,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ACM, 2015, pp. 805–816.

5. G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work practices and chal-
lenges in pull-based development: the integrator’s perspective,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE Press, 2015, pp.
358–368.

6. I. Steinmacher, G. Pinto, I. Wiese, and M. A. Gerosa, “Almost there: A study on quasi-
contributors in open-source software projects,” in ICSE18. 40th International Conference
on Software Engineering, 2018, p. 12.

7. E. Van Der Veen, G. Gousios, and A. Zaidman, “Automatically prioritizing pull requests,”
in Proceedings of the 12th Working Conference on Mining Software Repositories. IEEE
Press, 2015, pp. 357–361.

8. R. Herbrich, T. Graepel, and K. Obermayer, “Support vector learning for ordinal regres-
sion,” 1999.

9. R. Herbrich, “Large margin rank boundaries for ordinal regression,” Advances in large
margin classifiers, pp. 115–132, 2000.

Improving the Pull Requests Review Process Using Learning-to-rank Algorithms 29

10. G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-based
software development model,” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 345–355.

11. J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical factors for eval-
uating contribution in github,” in Proceedings of the 36th international conference on
Software engineering. ACM, 2014, pp. 356–366.

12. P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida, “Improving
code review effectiveness through reviewer recommendations,” in Proceedings of the 7th
International Workshop on Cooperative and Human Aspects of Software Engineering.
ACM, 2014, pp. 119–122.

13. P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i. Mat-
sumoto, “Who should review my code? a file location-based code-reviewer recommendation
approach for modern code review,” in Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on. IEEE, 2015, pp. 141–150.

14. V. Balachandran, “Reducing human effort and improving quality in peer code reviews
using automatic static analysis and reviewer recommendation,” in Software Engineering
(ICSE), 2013 35th International Conference on. IEEE, 2013, pp. 931–940.

15. Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer recommender of pull-requests in
github,” in Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 609–612.

16. ——, “Who should review this pull-request: Reviewer recommendation to expedite crowd
collaboration,” in Software Engineering Conference (APSEC), 2014 21st Asia-Pacific,
vol. 1. IEEE, 2014, pp. 335–342.

17. Z. Li, G. Yin, Y. Yu, T. Wang, and H. Wang, “Detecting duplicate pull-requests in github,”
in Proceedings of the 9th Asia-Pacific Symposium on Internetware. ACM, 2017, p. 20.

18. G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the 10th working
conference on mining software repositories. IEEE Press, 2013, pp. 233–236.

19. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, “The
promises and perils of mining github,” in Proceedings of the 11th working conference on
mining software repositories. ACM, 2014, pp. 92–101.

20. R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider, “Creating a shared
understanding of testing culture on a social coding site,” in Software Engineering (ICSE),
2013 35th International Conference on. IEEE, 2013, pp. 112–121.

21. P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in Proceedings of the 2008
international working conference on Mining software repositories. ACM, 2008, pp. 67–76.

22. T. Tenny, “Program readability: Procedures versus comments,” IEEE Transactions on
Software Engineering, vol. 14, no. 9, pp. 1271–1279, 1988.

23. D. R. McCallum and J. L. Peterson, “Computer-based readability indexes,” in Proceedings
of the ACM’82 Conference. ACM, 1982, pp. 44–48.

24. P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering. ACM,
2007, pp. 34–43.

25. M. Colaco, P. F. Svider, N. Agarwal, J. A. Eloy, and I. M. Jackson, “Readability assessment
of online urology patient education materials,” The Journal of urology, vol. 189, no. 3, pp.
1048–1052, 2013.

26. J. H. Zar, “Spearman rank correlation,” Encyclopedia of Biostatistics, 1998.
27. C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use

standard deviation around the mean, use absolute deviation around the median,” Journal
of Experimental Social Psychology, vol. 49, no. 4, pp. 764–766, 2013.

28. H. Li, “A short introduction to learning to rank,” IEICE TRANSACTIONS on Informa-
tion and Systems, vol. 94, no. 10, pp. 1854–1862, 2011.

29. J. Zhou and H. Zhang, “Learning to rank duplicate bug reports,” in Proceedings of the
21st ACM international conference on Information and knowledge management. ACM,
2012, pp. 852–861.

30. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der, “Learning to rank using gradient descent,” in Proceedings of the 22nd international
conference on Machine learning. ACM, 2005, pp. 89–96.

31. Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting algorithm for
combining preferences,” Journal of machine learning research, vol. 4, no. Nov, pp. 933–
969, 2003.

30

32. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals
of statistics, pp. 1189–1232, 2001.

33. D. Metzler and W. B. Croft, “Linear feature-based models for information retrieval,”
Information Retrieval, vol. 10, no. 3, pp. 257–274, 2007.

34. Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank: from pairwise approach
to listwise approach,” in Proceedings of the 24th international conference on Machine
learning. ACM, 2007, pp. 129–136.

35. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.
36. H. Li, “Learning to rank for information retrieval and natural language processing,” Syn-

thesis Lectures on Human Language Technologies, vol. 7, no. 3, pp. 1–121, 2014.
37. K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, “Evolution patterns

of open-source software systems and communities,” in Proceedings of the international
workshop on Principles of software evolution. ACM, 2002, pp. 76–85.

38. Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T.-Y. Liu, “A theoretical analysis of ndcg
ranking measures,” in Proceedings of the 26th Annual Conference on Learning Theory
(COLT 2013), 2013.

39. S. Niu, J. Guo, Y. Lan, and X. Cheng, “Top-k learning to rank: labeling, ranking and
evaluation,” in Proceedings of the 35th international ACM SIGIR conference on Research
and development in information retrieval. ACM, 2012, pp. 751–760.

40. A. Hindle, D. M. German, and R. Holt, “What do large commits tell us?: a taxonomical
study of large commits,” in Proceedings of the 2008 international working conference on
Mining software repositories. ACM, 2008, pp. 99–108.

41. W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal
of the American statistical Association, vol. 47, no. 260, pp. 583–621, 1952.

Appendices
Appendix A Decision table

Appendix B Survey e-mail template

Dear %s,
My name is Guoliang Zhao. I am a PhD student at Queen’s University, Canada.

I am inviting you to participate in a survey (consists of only 5 questions and will
not take you more than 5 minutes) about improving the pull requests review pro-
cess because you are an active GitHub code reviewer. We apologize in advance
if our email is unwanted or a waste of your time. Your feedback would be highly
valuable to our research. This study will help us understand how Github code
reviewers would react to our pull requests recommending approach. There are no
mandatory questions in our survey. To participate, please click on the following
link: https://docs.google.com/forms/d/e/1FAIpQLScUWVQkpS42fVNNfsh EK-
wrKKgb7EKJb5HxLVLbKpNJYbnqk1A/viewform?usp=sf link

To compensate you for your time, you may win one $10 Amazon gift card if
you complete the full questionnaire. We will randomly select 20% of participants
as winners. We would also be happy to share with you the results of the survey, if
you are interested.

If you have any questions about this survey, or difficulty in accessing the site
or completing the survey, please contact Guoliang Zhao at g.zhao@queensu.ca or
Daniel Alencar da Costa at daniel.alencar@queensu.ca. Thank you in advance for
your time and for providing this important feedback!

Best regards,
Guoliang

31

Table 15 Decision table for highly correlated pairs

Variable1 Variable2 Choice
test inclusion test churn test churn
src churn files changed src churn
src churn ccn added ccn added
src churn ccn deleted ccn deleted
files changed commit file changed commit file changed
ccn added ccn deleted ccn added
src churn comments added src churn
ccn added comments added ccn added
test churn src churn src churn
files chnaged ccn added ccn added
contributor succ rate is reviewer contributor succ rate
is reviewer prior interaction prior interaction
src churn commit file changed commit file changed
contributor succ rate prior interaction contributor succ rate
test churn files changed test churn
followers is reviewer is reviewer
test churn ccn added test churn
test churn comments added test churn
test churn commit file changed test churn
test inclusion src churn test inclusion
test inclusion files changed test inclusion
test inclusion commit file changed test inclusion
test inclusion ccn added test inclusion
test inclusion comments added test inclusion
files changed comments added comments added
commit file changed ccn added commit file changed
commit file changed comments added commit file changed
followers prior interaction prior interaction
contributor succ rate followers contributor succ rate
followers ccn deleted ccn deleted
is reviewer ccn deleted is reviewer

