
The Impact of Refactoring Changes on the SZZ
Algorithm: An Empirical Study
Edmilson Campos Neto∗†, Daniel Alencar da Costa‡, Uirá Kulesza∗

∗Federal University of Rio Grande do Norte, Natal, Brazil
uira@dimap.ufrn.br

†Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal, Brazil
edmilson.campos@ifrn.edu.br

‡Queen’s University, Kingston, Canada
daniel.alencar@queensu.ca

Abstract—SZZ is a widely used algorithm in the software
engineering community to identify changes that are likely to
introduce bugs (i.e., bug-introducing changes). Despite its wide
adoption, SZZ still has room for improvements. For example,
current SZZ implementations may still flag refactoring changes
as bug-introducing. Refactorings should be disregarded as bug-
introducing because they do not change the system behaviour.
In this paper, we empirically investigate how refactorings impact
both the input (bug-fix changes) and the output (bug-introducing
changes) of the SZZ algorithm. We analyse 31,518 issues of
ten Apache projects with 20,298 bug-introducing changes. We
use an existing tool that automatically detects refactorings in
code changes. We observe that 6.5% of lines that are flagged
as bug-introducing changes by SZZ are in fact refactoring
changes. Regarding bug-fix changes, we observe that 19.9%
of lines that are removed during a fix are related to refac-
torings and, therefore, their respective inducing changes are
false positives. We then incorporate the refactoring-detection
tool in our Refactoring Aware SZZ Implementation (RA-SZZ).
Our results reveal that RA-SZZ reduces 20.8% of the lines that
are flagged as bug-introducing changes compared to the state-
of-the-art SZZ implementations. Finally, we perform a manual
analysis to identify change patterns that are not captured by
the refactoring identification tool used in our study. Our results
reveal that 47.95% of the analyzed bug-introducing changes
contain additional change patterns that RA-SZZ should not flag
as bug-introducing.

Index Terms—SZZ algorithm, refactoring, bug-introducing
change, bug-fix change

I. INTRODUCTION

Much research has been invested in bug prediction [1]–[6],
[6]–[11]. For example, prior work predicts bugs using informa-
tion from source code repositories. Examples of information
used in the bug prediction are code churn metrics [1] [12]
[2], object-oriented design metrics [3], complexity of code
changes [5] [4], change meta-data [6] etc. Bug prediction is
helpful to development teams to prioritize code regions with
a greater probability of bugs occurrence [13].

Although bug prediction is an important tool, it was not pos-
sible to study the origin of bugs in large-scale scenarios until
the introduction of the SZZ algorithm [14]. The SZZ algorithm
traces back the code history to find changes that are likely
to introduce bugs, i.e., the so-called bug-introducing changes.
SZZ was initially proposed by Śliwerski, Zimmermann and

Zeller [14] – hence the acronym – and improved by Kim et
al. [15]. However, SZZ is not without limitations [16]–[18],
such as the recognition of equivalent changes, i.e., changes
that do not modify system behaviour.

Several studies [19]–[21] state that code refactoring is a fre-
quently used technique by developers during bug-fix changes.
SZZ may produce inaccurate data by not recognizing that bug-
fix changes may contain interleaved refactorings, since code
refactoring does not directly fix a bug [22]. Similarly, SZZ
may erroneously flag refactoring changes as bug-introducing
changes. For example, if SZZ flags a line as potentially bug-
introducing, but such a line is the result of a method rename,
SZZ should trace the history further using the previous method
name.

Prior research has evaluated the SZZ algorithm [16]–[18].
For example, da Costa et al. [17] used an evaluation framework
to appraise the results of SZZ. In addition, Prechelt et al. [16]
also evaluated SZZ in an industrial setting. These studies help
to identify possible enhancements to be implemented to SZZ
and what are the hindrances to perform better evaluations of
SZZ.

Nevertheless, little is known about the impact of refactoring
changes on the results of the SZZ algorithm. Studying the
impact of refactoring changes is important because, differently
from other SZZ limitations (e.g., the identification of renames
in directories and files [17]), such changes may impact the
SZZ algorithm regardless the Version Control System (VCS)
that is used to implement SZZ. The goal of our research is
to quantify the refactoring changes that occur both in bug-
fixing changes (i.e., the input of the SZZ algorithm) and bug-
introducing changes (i.e., the SZZ-generated data). We use
RefDiff [23], a recent proposed state-of-the-art tool to detect
refactoring changes in our analyses. We address the following
research questions (RQs):

• RQ1. What is the impact of refactoring changes
upon existing SZZ implementations? The refactoring
lines found by RefDiff represent 6.5% (30,562 lines)
of the potential bug-introducing lines that are flagged
by MA-SZZ (meta change aware SZZ)—a state-of-the-
art SZZ implementation. These results should be inter-
preted as a lower bound of the total of refactoring lines

978-1-5386-4969-5/18 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

380

that SZZ may flag, since RefDiff can only detect 13
refactoring types [23]. Nevertheless, SZZ may also be
tainted by refactoring changes that occur during bug-
fixes. We identify that 19.9% (110,928) of the removed
lines during fixes are related to refactoring changes—they
should not be traced back by SZZ. Our results suggest
that refactoring changes during bug-fixes may have a
considerable impact on current SZZ implementations in
terms of producing false positives.

• RQ2. How many false bug-introducing changes can be
removed from the SZZ-generated data? We incorporate
the RefDiff tool into an existing SZZ implementation
and propose a Refactoring Aware SZZ implementation
(RA-SZZ). RA-SZZ reduces 20.8% of the lines that were
flagged as bug-introducing changes by MA-SZZ.

• RQ3. Can we find other change patterns that are not
supported by RefDiff? After manually analyzing a sta-
tistical sample of the RA-SZZ-generated data (with 95%
of confidence), we identify that 47.95% are related to
equivalent changes that RA-SZZ should not flag as bug-
introducing, such as undetected refactoring (8.49%); mul-
tiple refactoring per line (15.89%); addition/removal of
unnecessary code (2.47%); swap iteration style (1.92%)
etc. In future work, we plan to incorporate the detection
of these changes into the RA-SZZ algorithm.

The remainder of this paper is organized as follows. In
Section II, we present the background material of our paper. In
Section III, we describe our methodology, while in Section IV
we describe the results of our study. In Section V, we discuss
the threats to validity of our study. In Section VI we draw our
conclusions and outline venues for future work.

II. BACKGROUND & RELATED WORK

In this section, we describe the SZZ algorithm and explain
why refactoring changes may distort the SZZ results. Finally,
we also describe how refactoring may be interleaved within a
bug-fix change.

A. Bug-fix & Bug-introducing Changes

Definition 1—Bug-fix change. Bug-fix changes refer to
changes that are known to fix a bug that is reported on an Issue
Tracking System (ITS, e.g., JIRA and Bugzilla). There exist
several heuristics that rely on ITS information to identify bug-
fix changes [24]–[26]. For example, if a change log contains
references to bug IDs that can also be found on the respective
ITSs, such a change is deemed as bug-fixing. During a bug-fix
change several lines are added, removed or modified. We call
each one of these lines as bug-fix lines.

Definition 2—Bug-introducing change. Bug-introducing
changes refer to code changes that eventually induce a bug
fix change (Definition 1) in the future system [14], [15]. A
bug-introducing change contains a set of lines of code that are
added, removed or modified during the change. We refer to
the code lines of a bug-introducing change as bug-introducing
lines.

B. SZZ Algorithm

Identifying and preventing bugs in software systems is an
overarching goal of the software engineering (SE) community
[10], [12], [14], [15], [27]–[29]. In this matter, Śliwerski
et al. [14] proposed the seminal SZZ algorithm to identify
bug-introducing changes (see Definition 2).

In order to identify bug-introducing changes, the SZZ algo-
rithm starts analyzing the bug-fix changes (see Definition 1).
Figure 1 provides an illustrative example of how SZZ works.
In V2, a loop is added to print an array (V2: lines 3,4,5).
This change introduces an array index out of range bug, since
the loop has a number of iterations that is greater than the
elements of the array. Eventually, this bug is reported on the
ITS with an issue ID of #123. In this case, V2 is a bug-
introducing change that is fixed by V3, which changes the
loop terminating condition, i.e., statement (V3: line 3).

Fig. 1: Illustrative Example 1

By using the aforementioned heuristics (e.g., references of
bug IDs within change logs), the SZZ algorithm identifies a
bug ID within the V3 log, which refers to the bug #123
(Figure 1.a). Hence, V3 is found to be a bug-fix change. Next,
SZZ performs a diff operation between the bug-fix change and
the previous change (Figure 1.b) to identify how the bug was
fixed. In our example, line 3 was modified to fix the bug #123.
Finally, to locate the bug-introducing change, SZZ traces back
in code history (e.g., using the git blame function) to find
the change that introduced the bug, i.e., the bug-introducing
change (Figure 1.c).

The initial SZZ implementation [14] uses the annotate
function provided by particular VCSs (e.g., Subversion) to
identify the latest change that introduced each removed/mod-
ified line of a bug-fix change. Kim et al. [15] improved
SZZ by using an annotation-graph that helps SZZ to avoid
flagging comments, blank lines and cosmetic changes as
potential bug-introducing changes. Later, da Costa et al. [17]
noticed that SZZ erroneously flagged meta-changes, such
as branch/merge and property changes, as potential bug-
introducing changes. Then, they proposed the MA-SZZ (meta
change aware SZZ) [17] implementation, which disregards
meta-changes as bug-introducing. The authors also proposed a
conceptual framework to evaluate SZZ implementations. The

381

Fig. 2: Illustrative Example 2 showing the difference SZZ-generated data caused by RA-SZZ implementation

framework was used to compare the results of five previ-
ous SZZ implementations. Their results suggest that current
state-of-the-art SZZ implementations may still be improved.
For example, SZZ still needs to avoid flagging equivalent
changes [17] as bug-introducing. An example of an equivalent
change is the replacement of the old-fashioned for Java loop
for the most recent syntax.1

C. The Impact of Refactoring Changes

Definition 3—Refactoring. Fowler [22] defines a refactor-
ing as being a change performed to improve the design of
a system without changing its external behaviour. He also
presents an extensive catalogue of 63 different refactorings.
Silva et al. [23] proposed RefDiff2, a tool that is able to
automatically identify 13 refactoring types out of the 63
that are mentioned by Fowler. They [23] demonstrate that
RefDiff obtains a higher precision and recall when compared
to existing approaches. The precision and recall of RefDiff
are, respectively, 100% and 88%. Henceforth, we use the
term refactoring changes/lines to refer to changes or lines that
contain one or more of the 13 refactoring types that can be
identified by RefDiff.

Definition 4—Refactoring line. Refactoring lines refer to
a set of lines of code that are deemed as refactoring for each
change (i.e., either bug-fix or bug-introducing changes). For
example, let us consider a bug-fix (or bug-introducing change)
b that has a set of lines of code Lb = {l1, l2, ..., ln}. After
applying a refactoring-detection tool to Lb, we obtain a subset
Rb ⊂ Lb that contains all the refactoring lines.

Definition 5—Equivalent changes. We use the term equiv-
alent changes, as defined by da Costa et al. [17], to refer
to code changes (usually related to a specific programming
language, e.g., Java) that do not change software behaviour.
For example, the swap of Java loop styles—from for(int
i=0 ; i < papers.size() ; i++) to for(Paper
p : papers)—or the addition/deletion of equivalent syn-
tax code—removal of an unnecessary this keyword. These

1https://coderanch.com/t/408756/java/loop-loop
2https://github.com/aserg-ufmg/RefDiff

changes are equivalent within the Java programming language
and by no means should modify the behaviour of a software
system. Therefore SZZ should not flag such changes as bug-
introducing changes. Henceforth, we use the term equivalent
changes to refer to the instances of aforementioned examples.
It is not the goal of our work to dive into the conceptual
similarities/differences between a refactoring change and an
equivalent change. Thus, we advise the reader to be attained
to our provided definitions when reading these terms in the
rest of this paper.

D. Refactoring within Bug-fixes

A bug-fix change consists of multiple lines. However, not
all of these lines are responsible for the bug-fix. For example,
developers may decide to refactor the code while performing
a bug-fix [16]. We present another illustrative example in
Figure 2 to explain this scenario. Change #4 fixes a problem
in the conditional statement of the loop at line #4, i.e., instead
of ≤ the statement should be <.

Change #4 also renames the method foo() to bar()
(i.e., #3-#4, line 1). In addition, change #3 stores the size of
the array in the variable s (i.e., line #3), which is later used
in the loop at line #4. Both the method rename and the use of
a temporarily variable are considered as refactoring changes
(see Definition 3).

In our example, SZZ would erroneously flag changes #1
and #3 (i.e., false positives) when tracing the history of
lines #1 and #4 of change #4 (Figure 2.a). On the other
hand, an eventual refactoring aware SZZ implementation could
automatically identify and handle those refactoring changes. In
fact, change #2 is the one responsible for introducing the bug
illustrated in Figure 2.b.

III. STUDY SETTINGS

In this section, we present details about our studied systems
(Section III-A), studied SZZ implementations (Section III-B),
and investigated RQs (Section III-C). We describe the moti-
vation and the approach to address each RQ.

382

https://coderanch.com/t/408756/java/loop-loop
https://github.com/aserg-ufmg/RefDiff

TABLE I: Subject Systems Overview

System System Domain Bug
is-

sues

Bug-
Fix

ActiveMQ an open source messaging broker 2,180 3,581
Camel an open source integration framework 4,747 10,568
Derby an open source relational database

management system (DBMS)
3,925 9,556

Geronimo an open source application server for
Java Enterprise Edition (J2EE)

3,561 7,702

Hadoop a software library (framework) for
distributed processing

4,824 8,595

HBase a non-relational database for large data 5,779 11,329
Mahout a framework for scalable performant

machine learning applications
864 1,414

OpenJPA an object-relational mapping (ORM)
solution for Java Persistence API

1,486 4,516

Pig a high-level platform for creating
programs that run on Apache Hadoop

1,904 3,164

Tuscany an implementation for service-oriented
architecture (SOA)

2,248 4,430

31,518 64,855

A. Studied Systems

In this study, we leverage the dataset that was used by da
Costa et al. [17] and study 10 software systems. Table I shows
our studied systems, their bug reports, and bug-fix changes. All
of our studied systems use the JIRA ITS to manage their bug
reports. Also, the source code changes of our studied systems
are hosted in a Subversion VCS. In total, this dataset contains
31,518 bug reports and 64,855 bug-fix changes. The full details
of our refactoring dataset is available online to the interested
reader.3

B. Studied SZZ Implementation

Since we leverage the dataset that was used by da Costa
et al. [17], our SZZ-generated data (i.e., the bug-introducing
changes) was produced by the MA-SZZ algorithm (Sec-
tion II-B), which is an SZZ implementation that was proposed
and evaluated by da Costa et al. [17]. In addition, we also
enhance MA-SZZ to identify refactoring changes and propose
the Refactoring Aware SZZ (RA-SZZ). We provide further
details in Section III-C.

C. Research Questions

We investigate the following research questions to study the
impact of refactoring changes on the SZZ algorithm:

RQ1. What is the impact of refactoring changes upon existing
SZZ implementations?

Motivation: Since refactoring changes (see Definition 3)
rarely are the cause of bugs, SZZ must be aware of these
changes to not flag them as bug-introducing. Instead, SZZ
should ignore refactoring changes when they occur in a bug-fix
change, or trace back further in history if SZZ finds a potential
bug-introducing change that is a refactoring change. This
investigation is important because SZZ plays a foundational

3https://sites.google.com/view/refactoringszz/

role in many software engineering (SE) studies [8], [30]–
[48]. In case the impact of refactoring changes on SZZ is
considerable, the SE community may consider to rethink or
revisit the use of the SZZ algorithm in existing research.

RQ2. How many false bug-introducing changes can be re-
moved from the SZZ-generated data?

Motivation: It is important to enhance the SZZ algorithm in
order to prevent it from flagging refactoring changes as bug-
introducing changes. If SZZ can properly handle refactoring
changes, the results will become more credible.

RQ3. Can we find other change patterns that are not supported
by RefDiff?

Motivation: Since the RefDiff tool can only identify 13
types of refactoring changes, which does not include equiv-
alent changes (see Definition 5), we also investigate whether
SZZ is producing a considerable number of false positives due
to equivalent changes.

IV. STUDY RESULTS

In this section, we present our obtained results for each RQ.

A. RQ1. What is the impact of refactoring changes upon
existing SZZ implementations?

Approach: We use RefDiff to automatically identify refac-
toring changes in both bug-fix changes and bug-introducing
changes of our dataset. RefDiff is our tool of choice be-
cause it outperformed existing tools that automatically detect
refactoring in source code. Silva et al. [23] evaluated RefDiff
and reported that it obtained the highest precision and recall
compared to other existing tools.

After applying RefDiff to the bug-fix and bug-introducing
changes, we obtain the refactoring lines (see Definition 4) for
each change (i.e., either bug-fix or bug-introducing changes).

Result: RefDiff indicates that 6.5% (30,562 lines) of the
potential bug-introducing lines that are flagged by MA-
SZZ are, in fact, refactoring changes. Table II shows how
many refactoring lines (refac-lines) are found within the bug-
introducing lines of each of our studied projects.

The Camel system has the highest ratio of refactoring to
lines (11.2%). Additionally, the OpenJPA, Hadoop Common,
and Geronimo systems have similar ratios (10.9%, 10.3%
and 9.9%, respectively). Nonetheless, we observe that the
overall mean of refac-lines is 6.5%. Although the small overall
mean, our result should be interpreted as a lower bound
observation, since RefDiff can only identify 13 types of
refactoring changes. Moreover, we also investigate the number
of refactoring changes that are performed during bug-fixes.

We identify that 19.9% (110,928) of the modified lines
within bug-fixes should not be traced by SZZ, since such
lines are deemed as refactoring changes by RefDiff. Ta-
ble III shows the proportion of refactoring changes that are
found in bug-fixes (refac-proportion) for each studied system
(i.e., refactoring lines

bug introducing lines). We observe that Hadoop Common con-
tains the highest refac-proportion among our studied systems

383

https://sites.google.com/view/refactoringszz/

(28.1%), followed by HBase (21.9%), and Geronimo (19.4%).
Derby has the lowest proportion (12%). On the overall mean,
the observed refac-proportion is of 19.9%.

Our results suggest that existing SZZ implementations
might be generating several false positives by not considering
refactoring changes during bug-fixes.�

�

�

�

We observe that 6.5% of the bug-introducing lines
produced by MA-SZZ are deemed as refactoring changes
by RefDiff. Additionally, 19.9% of the lines that were
modified during bug-fix changes should not be traced by
SZZ, since they are also identified as refactoring. Our
observations suggest SZZ may be considerably improved
by handling refactoring changes.

B. RQ2. How many false bug-introducing changes can be
removed from the SZZ-generated data?

Approach: We incorporate the RefDiff tool on top of MA-
SZZ to identify refactoring changes during the analyses of both
bug-fixing changes and bug-introducing changes (i.e., RA-
SZZ). In case refactoring changes are found in bug-fixes,
RA-SZZ does not trace them back in history. As for bug-
introducing changes, RA-SZZ does not stop at refactoring
changes. Instead, RA-SZZ traces back further in history to
find the most likely bug-introducing change.

Modified RefDiff. Figure 3 shows how we adapt RefDiff to
work in tandem with our RA-SZZ algorithm. The first step is
to gather the refactoring information for each change in our
entire dataset. For each file in each change, RefDiff receives
the previous version of the file (i.e., before the change) and
the current version of the file (i.e., the state of the file after the
change). For each file, RefDiff builds an AST and performs
a match of the parts that were modified between these files.
Next, RefDiff uses heuristics to identify refactoring changes
that were performed during these modifications. Then, we
add a functionality to RefDiff in order to capture specific
information that will be necessary for SZZ. In particular, we
capture the project, change revision (i.e., the commit ID),
refactoring type, path of the files, and start and end lines of

TABLE II: Refactoring changes in bug-introducing lines. The number
of bug-introducing changes of this table was produced by the MA-
SZZ algorithm.

System #lines #refac-lines refac-proportion
ActiveMQ 19,193 1,322 6.9%
Camel 20,366 2,284 11.2%
Derby 35,038 1,166 3.3%
Geronimo 45,744 4,551 9.9%
Hadoop Common 39,887 4,091 10.3%
HBase 236,761 12,101 5.1%
Mahout 14,858 369 2.5%
OpenJPA 7,866 854 10.9%
Pig 18,807 1,474 7.8%
Tuscany 30,320 2,350 7.8%
Total 468,840 30,562 6.5%

#lines: Number of bug-introducing lines flagged by MA-SZZ; #refac-
lines: Number of refactoring lines flagged as bug-introducing by MA-SZZ;
refac-proportion: Proportion of refactorings in bug-introducing lines.

TABLE III: Refactoring changes during bug-fixes. The number of
lines presented in this table consists of modified and removed lines
within bug-fixes.

System #lines #refac-lines refac-proportion
ActiveMQ 19,348 3,065 16%
Camel 20,669 3,793 18.4%
Derby 52,729 6,323 12%
Geronimo 49,763 9,650 19.4%
Hadoop 49,191 13,803 28.1%
HBase 283,124 62,004 21.9%
Mahout 9,185 1,411 15.4%
OpenJPA 19,801 3,166 16%
Pig 20,806 3,611 17.4%
Tuscany 32,602 4,072 12.5%
Total 557,218 110,928 19.9%

the refactoring. Finally, we store this refactoring data in a
database that will be later used by our RA-SZZ.

Fig. 3: An overview of our modified RefDiff (the blue boxes highlight
our modifications)

RA-SZZ overview. Once we have our refactoring data, RA-
SZZ is able to perform the refactoring checks in bug-fixes and
bug-introducing changes. Figure 4 shows an overview of how
RA-SZZ leverages the refactoring data to perform its analyses.

Fig. 4: Overview of RA-SZZ.

First, RA-SZZ builds an annotation graph of the modified
parts of bug-fixes (i.e., either modified or removed lines).
At this step, the first check for refactoring changes occurs
at the bug-fix level. By using the refactoring data, RA-
SZZ checks whether the removed/modified lines are within
a refactoring interval. In case the removes/modified lines are
refactoring changes, RA-SZZ does not include them in the

384

annotation graph. Next, RA-SZZ starts the bug-introducing
changes search. While searching for bug-introducing changes,
RA-SZZ also checks whether these bug-introducing candidates
contain refactoring changes. Finally, RA-SZZ stores the bug-
introducing changes information in a database.

Refactoring in bug-introducing changes. While checking
for refactoring changes in bug-introducing changes, RA-SZZ
may perform additional steps. Figure 5 shows how RA-
SZZ behaves when checking for refactoring changes in bug-
introducing changes.

Fig. 5: Checking refactoring in bug-introducing changes

For each line in a bug-introducing change RA-SZZ checks
whether there exists a refactoring. In case RA-SZZ finds a
refactoring, the algorithm checks whether the path of the line
was modified (e.g., when the move class or rename class
refactoring changes are performed). If that is the case, RA-
SZZ has to re-trace the bug-introducing changes using the
previous different path and repeat the refactoring checking
process. Otherwise, RA-SZZ performs an attempt to recover
the previous content of the line before the refactoring (i.e., by
using the refactoring data) in order to continue the bug-
introducing changes search. This entire process is repeated
until no refactoring changes are found.

RA-SZZ vs. MA-SZZ. Finally, we compare the results ob-
tained for MA-SZZ with the results of RA-SZZ. We gradually
compare our obtained results in a similar fashion as Kim et
al. [15], i.e., we assume that the results of RA-SZZ are more
precise, since RA-SZZ handles refactoring changes. Hence, we
assume that RA-SZZ outperforms MA-SZZ to the extent that
RA-SZZ is able to detect refactoring changes in our dataset.
Our comparisons allow us to measure how refactoring changes
impact SZZ. First, we compare the number of bug-introducing
lines that are produced by RA-SZZ and MA-SZZ. By doing so,
we can compare how many false positives MA-SZZ produces
by not considering refactoring changes. Finally, we also check
how many change revisions RA-SZZ can trace back further
when compared to MA-SZZ.

Result: RA-SZZ decreases 20.8% of the bug-introducing
lines that were flagged as bug-introducing by MA-SZZ
(i.e., false positives). Although this result does not prevent
that RA-SZZ flags extra false positives when tracing more into
history, due to other SZZ limitations not yet addressed, such
as backout changes and initial code importing changes [17].
But at least RA-SZZ can avoid that those refactorings are erro-

neously flagged as bug-introducing changes thus contributing
to improve the SZZ algorithm.

Table IV compares the MA-SZZ and RA-SZZ algorithms
in terms of bug-introducing lines that are generated by each
algorithm. We also present the decrease in the percentage of
bug introducing lines after applying RA-SZZ to our studied
systems. Our results show that RA-SZZ decreases the bug-
introducing ratio from 14.8% (Tuscany system) to 34.6%
(Mahout) in our studied systems. In the overall mean, there
was a 20.8% decrease in the bug-introducing lines in our
studied systems.

TABLE IV: The overall decrease of bug-introducing lines when
comparing MA-SZZ and RA-SZZ.

System MA-SZZ RA-SZZ % reduction
ActiveMQ 19,193 15,875 17.3%
Camel 20.366 16,291 20%
Derby 35,038 29,570 15.6%
Geronimo 45,744 33,987 25.7%
Haddop Common 39,887 28,491 28.6%
HBase 236,761 189,192 20.1%
Mahout 7,866 5,145 34.6%
OpenJPA 14,585 11,571 22.1%
Pig 18,807 15,367 18.3%
Tuscany 30,320 25,831 14.8%
Total 468,840 371,320 20.8%

In addition, Figure 6 shows the distributions of bug-
introducing lines that are produced by MA-SZZ and RA-
SZZ. We observe that the distribution of bug-introducing lines
becomes less skewed when applying MA-SZZ. Our results
suggest that RA-SZZ may be of considerable help in the
software engineering community by reducing the noise in
SZZ-generated data due to refactoring changes.

Fig. 6: Comparison between MA-SZZ and RA-SZZ for flagged bug-
introducing lines per bug-fix

RA-SZZ traces the history further for 41% of the bug-
introducing lines deemed as refactoring changes. We also

385

TABLE V: Summary about the additional changes that RA-SZZ can
search further in history.

System #Refac Trace further Additional changes
% avg max min

ActiveMQ 646 332 51.4% 22 114 2
Camel 1,477 613 43.3% 13 112 2
Derby 766 317 41.4% 16 102 2
Geronimo 2,284 921 40.3% 13 88 2
Haddop 1,734 641 37% 18 219 2
HBase 2,973 1,194 40.2% 18 172 2
Mahout 195 89 45.6% 10 26 2
OpenJPA 357 108 30.3% 17 122 2
Pig 660 326 49.4% 9 54 2
Tuscany 1,301 517 39.7% 11 54 2

12,333 5,058 41% 7 219 2

#refac: Number of refactored lines in bug-introducing changes; trace
further: Number and Percentage of further trace attempts that RA-SZZ
performs per system/line; Additional changes: the average, maximum and
minimum of additional investigated revisions, respectively, per system/line.

analyze how many of the refactoring changes that are identified
by RA-SZZ may be traced further in history. Table V shows
that out of 12,333 bug-introducing lines, RA-SZZ can trace
the history further for 5,058 lines (41%). We also observe that
from these 41%, RA-SZZ analyzes a mean of 7 additional
changes when tracing the history further (with the maximum
of 219 changes)

Figure 7 shows an example of a refactoring change
that RA-SZZ was able to trace further in history. When
analyzing bug HBASE-1607, MA-SZZ flagged the line
88 of the file Store.java within the change 747672
as a bug-introducing line. The content of line 88 is a Java
class declaration. Change 747672 consists of renaming
the name of the class from HStore to Store (i.e., a
refactoring change of type renaming). In this example,
RA-SZZ was able to identify that the file-path changed to
/hadoop/hbase/trunk/src/java/org/apache/ha
doop/hbase/re-gionserver/HStore.java. RA-

Fig. 7: Example of trace back process using RA-SZZ

SZZ was then able to trace further in history across 96
change revisions until change 630550. At change 630550,
RA-SZZ identified another refactoring change of type move
class. Finally, RA-SZZ traced further in history across
16 additional changes until change 611519, which was
flagged as bug-introducing. Without the ability of identifying
refactoring changes, MA-SZZ would stop tracing at change
747672.�

�

�

We observe that RA-SZZ decreases 20.8% of the bug-
introducing lines that were produced by MA-SZZ (false
positives). In addition, RA-SZZ was able to trace the
history further for 41% of the bug-introducing lines that
were deemed as refactoring changes by RefDiff.

C. RQ3. Can we find other change patterns that are not
supported by RefDiff?

Approach: We perform a manual analysis of 365 bug-
introducing lines that are produced by RA-SZZ. Our goal is
to check whether there exist additional equivalent changes
(see Definition 5) that RA-SZZ is erroneously flagging as
bug-introducing. Our 365 bug-introducing lines data is a
randomized sample from a population of 7,275 refactoring
lines—that are flagged as bug-introducing by MA-SZZ—with
a confidence level of 95% and confidence interval of 5%.

Result: We observe that 47.95% of our manually analyzed
lines are related to equivalent changes that RA-SZZ should
disregard as bug-introducing. We perform a manual analysis
to identify why RA-SZZ was not able to trace the history
further for 59% (7,275) of the bug-introducing lines that were
deemed as refactoring changes (see RQ2). We manually inves-
tigate a sample of 365 bug-introducing lines (95% confidence
level). We found that 52.05% of these lines are related to
refactoring changes, such as change class modifier, added
parameter, and change method signature. These changes could
not be traced further by RA-SZZ because they do not have
an associated line in the previous change (e.g., these lines
were added after the refactoring was performed). However,
the remaining 47.95% should have been traced further. These
47.95% of lines were related to equivalent changes (see Defi-
nition 5). Table VI shows an overall statistics of the identified

TABLE VI: Change patterns identified during manual analysis

Change Patterns #cases % lines
Scope adjustment 10 5.75%
Multiple refactoring 58 15.89%
Extrac method adjustment 20 5.48%
Undetected additional refatoring 31 8.49%
Unncessary code 9 2.47%
Unncessary this 3 0.82%
Break if-statement 2 0.55%
Temporary variable 12 3.29%
Swap iteration style 7 1.92%
Change interface or superclass 4 1.1%
Code verbosity 3 0.82%
Cast and log changes 5 1.37%

386

equivalent changes. For example, there were 58 occurrences of
multiple refactorings which represent 15.89% of all analysed
bug-introducing lines. Furthermore, we present examples for
some occurrences of the observed equivalent changes below.
The data used in this manual analysis is available online to
the interested reader.4

• Change interface or superclass [49]: Changes that modify
interfaces and/or a superclass of existing classes, while
maintaining system behaviour. For example, in change
492404 (Listing 1—2), a rename class (detected by RA-
SZZ) and a change on the inheritance and realization
relationships are performed (line 26—Listing 2 is not
detected by RA-SZZ):

−23. p u b l i c c l a s s ABean JPA ex tends ABean{

Listing 1: Change 492404, ABean_JPA.java, OpenJPA

+26 . p u b l i c c l a s s ExampleABean JPA ex tends ABean
implements Cmp2Enti ty{

Listing 2: Change 492404, ExampleABean_JPA.java,
OpenJPA

• Temporary variable addition/deletion [49]: When the
change only adds or removes temporary variables in
source code, e.g., change 201894 (Listing 3):

−186. t a s k R e p o r t s . add (t i p . g e t S t a t u s ()) ;
−187. i f (t i p . g e t S t a t u s () . g e t R u n S t a t e () !=

T a s k S t a t u s .RUNNING) {
+186 . T a s k S t a t u s s t a t u s = t i p . c r e a t e S t a t u s () ;
+187 . t a s k R e p o r t s . add (s t a t u s) ;
+188 . i f (s t a t u s . g e t R u n S t a t e () != T a s k S t a t u s .

RUNNING) {

Listing 3: Change 201894, TaskTracker.java, HBase

• Unnecessary code addition/deletion [49]: This situation
occurs when unnecessary code structures, (e.g., the use
of braces in an if-scope with just one statement) are
removed or added in the source code. For example, in
change 393035 (Listing 4):

−121. i f (parentName == n u l l) {
−122. re turn n u l l ;
−123. }
+154 . i f (parentName == n u l l)
+155 . re turn n u l l ;

Listing 4: Change 393035, FSDirectory.java, Haddop

• Swapping condition of an if-statement. [50] This pattern
occurs when breaking a conditional expression in multi-
ple if-statements (or the reverse), e.g., change 783632
(Listing 5):

−105. } e l s e i f (c o n t e n t T y p e . s t a r t s W i t h (” t e x t /
p l a i n ”)) {

+132 . } e l s e {
+133 . i f (c o n t e n t T y p e . s t a r t s W i t h (” t e x t / p l a i n ”

)) {

Listing 5: Change 783632, MailBinding.java, Camel

4https://sites.google.com/view/refactoringszz/

• Swap iteration style [17]: This pattern occurs
when the iteration style is changed. For
example, change 109872 from Geronimo system
moves the method addRoleMappings from
JettyXMLConfiguration (Listing 6) to
SecurityContextBeforeAfter (Listing 7)
class. However, RA-SZZ could not recover the previous
version of line +117 (see Listing 7), since change
109872 also swaps the iteration style in this line during
the move operation;

−337. I t e r a t o r r e a l m s = r o l e . ge tRea lms () . v a l u e s
() . i t e r a t o r () ;

−338. whi le (r e a l m s . hasNext ()) {

Listing 6: Change 109872, JettyXMLConfiguration
.java, Geronimo

+117 . f o r (I t e r a t o r r e a l m s = r o l e . ge tRea lms () .
v a l u e s () . i t e r a t o r () ; r e a l m s . hasNext () ;) {

Listing 7: Change 109872, SecurityContextBefore
After.java, Geronimo

• Scope adjustment during extraction: This pattern occurs
when a method is extracted from its original class to
a different class. In some cases, it is also necessary to
adjust the scope of the variables that are used in the
original method call. For example, in change 630545,
the method regionServerStartup (which is not
shown) was extracted from the HMaster class (List-
ing 8) to the ServerManager class (Listing 9). After
being extracted, the new method cannot access the vari-
able closed of its original class (line 110—Listing 8)
because such a variable had a private access in its original
class (i.e., HMaster, at line 87—Listing 8). To solve this
problem, an instance variable of type HBase is declared
after the method extraction (line 69—Listing 9). Finally,
the variable closed may be accessed in the extracted
method via instance variable. (line 118—Listing 9).

−87. p u b l i c c l a s s HMaster ex tends . . . {
−88. H M a s t e r R e g i o n I n t e r f a c e {
. . .
1 1 0 . v o l a t i l e AtomicBoolean c l o s e d = new

AtomicBoolean (t rue) ;
. . .
−712. i f (! c l o s e d . g e t ()) {

Listing 8: Change 630545, HMaster.java, HBase

+50 . c l a s s ServerManager implements . . . {
. . .
+69 . p r i v a t e HMaster m a s t e r ;
. . .
+118 . i f (! m a s t e r . c l o s e d . g e t ()) {

Listing 9: Change 630545, ServerManager.java, HBase

• Undetected refactoring: In some cases, we identify that
an additional refactoring was not recognized by RA-SZZ.
For example, a renamed variable (undetected) within
the scope of a moved method (detected) (e.g., change
393677);

387

https://sites.google.com/view/refactoringszz/

Fig. 8: Overview of the results obtained in this study for each RQ

• Multiple refactoring changes that lead to a doubtful
previous path: This case occurs when several refactoring
changes (with different origin paths) are found in the
same line. An implementation of SZZ should be able
to fork the refactoring change into different paths while
tracing back further in history (e.g., change 617338).

• Other equivalent changes: Several other minor equivalent
changes were identified, such as the addition/removal
of the this keyword [49]. The initialization with a
declaration of a global variable and deep semantics [49],
among others.�

�

�

Our results reveal that 47.95% of the analyzed bug-
introducing lines are related to equivalent changes that
RA-SZZ should not flag as bug-introducing. Among them
we found 15.89% to represent multiple refactorings per
line; 8.49% consist of undetected refactoring; 2.47% of
addition/removal of unnecessary code etc.

Result Summary. Finally, Figure 8 shows an overview of
the results obtained in this study for each RQ.

V. THREATS TO VALIDITY

In this section, we report the threats to the validity of our
study.

A. Internal Validity Threats

The interval validity is concerned with the causal conclu-
sions that are drawn based on the analyses of a study. In
this matter, we use the RefDiff tool to identify refactoring
changes. RefDiff can only identify 13 types of refactoring
out of the 63 types that are catalogued by Fowler [22]. In
particular, this threat does not impair our study but limits our
results. On the other hand, RefDiff may still generate false
positives. However, a recent study shows that RefDiff obtained
the best precision and recall for refactoring identification when
compared to the other existing tools [23], which is the reason
as to why we choose RefDiff to implement RA-SZZ.

B. Construct Validity Threats

The construct validity is concerned with the assumptions
behind the measures of a study. In this concern, we assume that
refactoring changes (Definition 3) should not introduce bugs
(as defined by Fowler). Nevertheless, we acknowledge the
research of Soares et al. [51] [52], which observes that some
refactoring attempts may be defective in specific situations.
However, the authors observed that less than 1% of the
refactoring attempts were defective [52]. In addition, none of
our studied samples are included in the situations described
by Soares et al. [51].

C. External Validity Threats

The external threats to the validity are concerned with
the ability to generalize the findings of a study to external
populations (i.e., in our case, software systems). In this matter,
we study 10 Apache open source systems to identify how
many refactoring changes are erroneously flagged as bug-
introducing. The used projects comprise different application
domains—e.g., messaging queue, database, service-oriented
architecture etc—and they are of different sizes. We acknowl-
edge that we cannot generalize our observations to other
different software systems. Nevertheless, the main goal of
our study is not to reach generalizability, since the amount
of refactoring may vary from project to project depending
on the practices of the development team. Instead, our main
goal is to highlight that current SZZ implementations generate
inaccurate results by not handling refactoring changes.

VI. CONCLUSIONS

In this paper, we study the impact of refactoring changes
on existing SZZ implementations. We use the RefDiff tool to
identify 13 types of refactoring that are interleaved in bug-
fixes, and that may be flagged as bug-introducing by SZZ. We
also propose the Refactoring Aware SZZ (RA-SZZ), which is
able to identify refactoring changes while tracing in the code
history. Finally, we perform a manual analysis of the bug-
introducing lines that could not be traced further by RA-SZZ.
Among our main findings, we observe that:

388

• 6.5% of the bug-introducing lines identified by MA-
SZZ are actually related to refactoring changes. Such
an observation should be interpreted as a lower bound
observation, since RefDiff can detect only 13 types of
refactoring changes;

• 19.9% of the bug-introducing lines that are modified
during bug-fixes are related to refactoring changes and
should not be traced further by SZZ;

• Our RA-SZZ removes 20.8% of the lines that are flagged
as bug-introducing changes by MA-SZZ. Moreover, RA-
SZZ was able to trace further the history of 5,058
refactored lines;

• 47.95% out of the 365 manually analyzed bug-
introducing lines contained equivalent changes that RA-
SZZ could not trace the history further. Examples of these
equivalent changes are undetected refactoring (8.49%),
multiple refactoring per line (15.89%), addition/deletion
of unnecessary code (2.47%), and swap iteration style
(1.92%).

SZZ is often used to provide support to empirical studies.
However, our study suggests that the results of previous re-
search might be tainted by not considering refactoring changes
when running the SZZ algorithm. We suggest that future
work should replicate previous analyses that relied on SZZ
to evaluate the extent of the impact that refactoring changes
may have on the results of previous research. Additionally,
we plan to evaluate RA-SZZ using the evaluation framework
proposed by da Costa et al. [17]. Finally, we are working
on building a ground truth to evaluate both existing and
future SZZ implementations. This ground truth data is being
constructed in partnership with a local software development
company.

ACKNOWLEDGEMENTS

This work is partially supported by the National Insti-
tute of Science and Technology for Software Engineering
(INES), CNPq grant 465614/2014-0, and National Council
for Scientific and Technological Development, CNPq grants
459717/2014-6 and 312044/2015-1.

REFERENCES

[1] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in Proceedings of 27th International Conference
on Software Engineering, 2005. ICSE 2005., IEEE. IEEE, 2005, pp.
284–292.

[2] E. Giger, M. Pinzger, and H. C. Gall, “Comparing fine-grained source
code changes and code churn for bug prediction,” in Proceedings of
the 8th Working Conference on Mining Software Repositories (MSR).
ACM, 2011, pp. 83–92.

[3] K. El Emam, W. Melo, and J. C. Machado, “The prediction of faulty
classes using object-oriented design metrics,” Journal of Systems and
Software, vol. 56, no. 1, pp. 63–75, 2001.

[4] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 452–461.

[5] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 78–88.

[6] S. Shivaji, J. E. J. Whitehead, R. Akella, and S. Kim, “Reducing features
to improve bug prediction,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2009, pp. 600–604.

[7] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug
prediction,” in Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement. ACM, 2012, pp.
171–180.

[8] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features
to improve code change-based bug prediction,” IEEE Transactions on
Software Engineering, vol. 39, no. 4, pp. 552–569, 2013.

[9] H. Hata, O. Mizuno, and T. Kikuno, “Reconstructing fine-grained ver-
sioning repositories with git for method-level bug prediction,” IWESEP
10, pp. 27–32, 2010.

[10] ——, “Bug prediction based on fine-grained module histories,” in Pro-
ceedings of the 34th International Conference on Software Engineering.
IEEE Press, 2012, pp. 200–210.

[11] D. Di Nucci, F. Palomba, S. Siravo, G. Bavota, R. Oliveto, and
A. De Lucia, “On the role of developer’s scattered changes in bug
prediction,” in Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on. IEEE, 2015, pp. 241–250.

[12] A. T. Misirli, E. Shihab, and Y. Kamei, “Studying high impact fix-
inducing changes,” Empirical Software Engineering, vol. 21, no. 2, pp.
605–641, 2016.

[13] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison
of bug prediction approaches,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010, pp. 31–41.

[14] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 4, ACM. ACM, 2005, pp. 1–5. [Online]. Available:
https://10.1145/1083142.1083147

[15] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic identifi-
cation of bug-introducing changes,” in Automated Software Engineering,
2006. ASE’06. 21st IEEE/ACM International Conference on. IEEE,
2006, pp. 81–90.

[16] L. Prechelt and A. Pepper, “Why software repositories are not used
for defect-insertion circumstance analysis more often: A case study,”
Information and Software Technology, vol. 56, no. 10, pp. 1377–1389,
2014.

[17] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and
A. E. Hassan, “A framework for evaluating the results of the SZZ
approach for identifying bug-introducing changes,” IEEE Transactions
on Software Engineering (TSE), vol. 43, no. 7, pp. 641–657, 2017.
[Online]. Available: https://doi.org/10.1109/TSE.2016.2616306

[18] S. Davies, M. Roper, and M. Wood, “A preliminary evaluation of text-
based and dependency-based techniques for determining the origins of
bugs,” in Reverse Engineering (WCRE), 2011 18th Working Conference
on. IEEE, 2011, pp. 201–210.

[19] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring
challenges and benefits,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 50.

[20] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, 2012.

[21] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, “A multidimensional
empirical study on refactoring activity,” in Proceedings of the 2013 Con-
ference of the Center for Advanced Studies on Collaborative Research.
IBM Corp., 2013, pp. 132–146.

[22] M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[23] D. Silva and M. T. Valente, “Refdiff: detecting refactorings in version
histories,” in Proceedings of the 14th International Conference on
Mining Software Repositories. IEEE Press, 2017, pp. 269–279.

[24] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings of the 25th international
Conference on Software Engineering. IEEE Computer Society, 2003,
pp. 408–418.

[25] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug
report data for feature tracking,” in Proceedings of the 10th Working
Conference on Reverse Engineering (WCRE), vol. 3, 2003, p. 90.

[26] ——, “Populating a release history database from version control and
bug tracking systems,” in Software Maintenance, 2003. ICSM 2003.
Proceedings. International Conference on. IEEE, 2003, pp. 23–32.

389

https://10.1145/1083142.1083147
https://doi.org/10.1109/TSE.2016.2616306

[27] H. Hata, O. Mizuno, and T. Kikuno, “Fault-prone module detection using
large-scale text features based on spam filtering,” Empirical Software
Engineering, vol. 15, no. 2, pp. 147–165, 2010.

[28] V. H. Nguyen and F. Massacci, “The (un) reliability of nvd vulnerable
versions data: An empirical experiment on google chrome vulnerabili-
ties,” in Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security. ACM, 2013, pp. 493–498.

[29] V. S. Sinha, S. Sinha, and S. Rao, “Buginnings: identifying the origins of
a bug,” in Proceedings of the 3rd India software engineering conference.
ACM, 2010, pp. 3–12.

[30] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in ACM SIGSOFT Software Engineering Notes, vol. 30, 2005,
pp. 1–5.

[31] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th Working
Conference on Mining Software Repositories, 2011, pp. 153–162.

[32] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
Empirical Software Engineering Journal, vol. 17, 2012, pp. 503–530.

[33] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-
grained study of authorship,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 491–500.

[34] H. Yang, C. Wang, Q. Shi, Y. Feng, and Z. Chen, “Bug inducing analysis
to prevent fault prone bug fixes,” in Proceedings of the 26th International
Conference on Software Engineering and Knowledge Engineering, 2014,
pp. 620–625.

[35] M. Asaduzzaman, M. C. Bullock, C. K. Roy, and K. A. Schneider,
“Bug introducing changes: A case study with android,” in Proceedings
of the 9th Working Conference of Mining Software Repositories, 2012,
pp. 116–119.

[36] K. Pan, S. Kim, and E. J. Whitehead Jr, “Toward an understanding of
bug fix patterns,” in Empirical Software Engineering Journal, vol. 14,
2009, pp. 286–315.

[37] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”
in Proceedings of the 3rd International Workshop on Mining Software
Repositories, 2006, pp. 173–174.

[38] M. L. Bernardi, G. Canfora, G. A. Di Lucca, M. Di Penta, and D. Dis-
tante, “Do developers introduce bugs when they do not communicate?
the case of eclipse and mozilla,” in Proceedings of 16th European
Conference on Software Maintenance and Reengineering, 2012, pp.
139–148.

[47] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi,
“An empirical study of just-in-time defect prediction using cross-project
models,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 172–181.

[39] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “How long does
a bug survive? an empirical study,” in Proceedings of the 18th Working
Conference on Reverse Engineering, 2011, pp. 191–200.

[40] J. Ell, “Identifying failure inducing developer pairs within developer
networks,” in Proceedings of the 35th International Conference on
Software Engineering, 2013, pp. 1471–1473.

[41] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting
faults from cached history,” in Proceedings of the 29th International
Conference on Software Engineering, 2007, pp. 489–498.

[42] J. Śliwerski, T. Zimmermann, and A. Zeller, “Hatari: raising risk
awareness,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
2005, pp. 107–110.

[43] D. A. da Costa, U. Kulesza, E. Aranha, and R. Coelho, “Unveiling
developers contributions behind code commits: an exploratory study,”
in Proceedings of the 29th Annual ACM Symposium on Applied
Computing. ACM, 2014, pp. 1152–1157. [Online]. Available:
https://10.1145/2554850.2555030

[44] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” in IEEE Transactions on Software Engineering
Journal, vol. 34, 2008, pp. 181–196.

[45] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,
and A. E. Hassan, “Revisiting common bug prediction findings using
effort-aware models,” in Proceedings of the 26th IEEE International
Conference on Software Maintenance, 2010, pp. 1–10.

[46] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” in IEEE Transactions on Software Engineering Journal,
vol. 39, 2013, pp. 757–773.

[48] O. Mizuno and H. Hata, “Prediction of fault-prone modules using a text
filtering based metric,” in International Journal of Software Engineering
and Its Applications, vol. 4, 2010, pp. 43–52.

[49] Y. Jung, H. Oh, and K. Yi, “Identifying static analysis techniques for
finding non-fix hunks in fix revisions,” in Proceedings of the ACM
first international workshop on Data-intensive software management and
mining. ACM, 2009, pp. 13–18.

[50] D. Jackson, D. A. Ladd et al., “Semantic diff: A tool for summarizing
the effects of modifications.” in ICSM, vol. 94, 1994, pp. 243–252.

[51] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE software, vol. 27, no. 4, pp. 52–57, 2010.

[52] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing
of refactoring engines,” IEEE Transactions on Software Engineering,

vol. 39, no. 2, pp. 147–162, 2013.

390

https://10.1145/2554850.2555030

	Introduction
	Background & Related Work
	Bug-fix & Bug-introducing Changes
	SZZ Algorithm
	The Impact of Refactoring Changes
	Refactoring within Bug-fixes

	Study Settings
	Studied Systems
	Studied SZZ Implementation
	Research Questions

	Study Results
	RQ1. What is the impact of refactoring changes upon existing SZZ implementations?
	RQ2. How many false bug-introducing changes can be removed from the SZZ-generated data?
	RQ3. Can we find other change patterns that are not supported by RefDiff?

	Threats to Validity
	Internal Validity Threats
	Construct Validity Threats
	External Validity Threats

	Conclusions
	References

