
Software Process Monitoring using Statistical Process Control

Integrated in Workflow Systems

Marília Aranha Freire, Daniel Alencar da Costa, Eduardo Aranha, Uirá Kulesza

Programa de Pós-Graduação em Sistemas e Computação

Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte

Campus Universitário, Lagoa Nova – 59.078-970 – Natal, RN – Brazil

{marilia.freire, danielcosta}@ppgsc.ufrn.br,{uira, eduardo}@dimap.ufrn.br

Abstract— This paper presents an approach that integrates

statistical process control techniques with workflow systems in

order to achieve software process monitoring. Our approach

allows: (i) software process monitoring through the automated

metrics collection; and (ii) the statistical process control of

software process aided transparently by statistical tools. The

use of workflow systems to this integration adds the benefits of

statistical process control without the additional effort to

integrate and use statistical tools. Our proposal allows project

managers to identify problems early during the process

execution, enabling quickly reactions (process improvements,

training, etc.) to reduce costs and ensure software quality.

Keywords: Software Process Monitoring, Statistical Process

Control, Workflow Systems

I. INTRODUCTION

The increasing complexity of modern software systems
has required more well-defined software development
processes utilization. Software Process Modeling Languages
– SPML support the definition and modeling of software
processes, providing functionalities to create and edit the
activities flow of their various disciplines, addressing the
elements that define a software process, such as tasks, steps,
artifacts, and roles [1] [2] [3]. In addition to the benefits and
advantages brought by process modeling languages, several
recent studies have emphasized the importance of providing
mechanisms and tools to support the execution of software
processes in order to enable the tracking and monitoring of
their activities. Monitoring software projects is important to
assess productivity and detect problems that may be
occurring and thus promote continuous process
improvement.

One approach to support software processes execution is
the use of workflow systems. These kinds of systems have
been consolidated over the past few years on the business
process management domain. The Business Process
Execution Language (BPEL), for example, is one of the main
industrial results developed by this community. Some recent
studies have promoted the integration of approaches and
languages for processes modeling and execution [4] [5] [6].

Process control and monitoring is a concept that have
been explored and adopted in the industrial scenario. Some
decades ago, emerged a statistical technique called Statistical
Process Control (SPC) [7] that aims to monitor and quickly
detect problems in process execution, allowing fast
corrective responses, increasing the quality and productivity
of the production processes. This technique has been widely
used in industry in general, and its concepts are already

being employed in the software industry over the past years
[8] [9] [10]. When using this technique, upper and lower
control bounds are established for relevant attributes of
production processes (time, cost, output quality, etc.), usually
based on historical data. Then, if attribute values collected
during the process execution are out of the range, these
values are called as outliers and they are highlighted for
investigation, since they may be caused by problems
occurred during the process execution.

This paper presents an approach for integrating statistical
process control techniques and workflow systems for
monitoring the execution of software processes. Our
approach supports: (i) the monitoring of process execution
through an automated support for metrics collection and (ii)
the statistical process control deployed in workflow systems.
As benefits, the approach promotes the monitoring of
process stability – ability to be predictable, and process
capability – ability to meet specifications, as well as quick
responses to outliers, supporting the analysis and decision-
making to continuous software process improvement.

The remainder of this paper is organized as follows.
Section 2 presents the foundations of process monitoring and
statistical process control. Section 3 presents an overview of
our approach, which an implementation is presented in
Section 4. Section 5 details the approach while illustrating its
application and section 6 describes the related works.
Finally, Section 7 concludes the paper and provides some
directions for future work.

II. BACKGROUND

A. Software Process Monitoring

The automated support for the software development
process definition is a concrete reality today. Several
approaches have been proposed to facilitate not only the
process definition, but also to provide better ways to specify
software processes customizations [2] [1] [3]. They provide a
set of tools, formalisms and mechanisms used for modeling
processes together or even specialize them. Moreover,
others research approaches have being proposed, such as
DiNitto [11], PROMENADE [12], Chou [13] and
UML4SPM [14].

While methodologies, tools and techniques for software
processes definition are already consolidated, the
environments supporting such software processes execution
are still in the process of ripening. The integration of
techniques for software processes definition, execution and
monitoring has emerged as a way to support the automatic
process monitoring, allowing the estimation of activities and

evaluation of team productivity, quality control and process
management, which eventually contribute to continuous
software process improvement. Software process monitoring
is a complex activity that requires the definition of metrics to
be collected during execution. The metrics collected at
runtime can help the manager during the analysis of the
project progress, facilitating the decision-making.

Freire et al [15] presents an approach for software
processes execution and monitoring. In that approach,
software processes are specified using the Eclipse Process
Framework (EPF), which can be automatically transformed
into specifications written in the jPDL workflow language
[16]. These specifications in jPDL can then be instantiated
and executed in the jBPM workflow engine [17]. In addition
to supporting the automatic mapping of EPF process
elements in workflow elements, the approach also: (i)
supports the automatic weaving of metrics collection actions
within the process model elements, which are subsequently
refined to actions and events in the workflow; and (ii) refines
the workflow specification to generate customized Java
Server Faces (JSF) web pages, which are used during
workflow execution to collect important information about
the current state of the software process execution.

Such an approach has been implemented using existing
model-driven technologies. QVTO and Acceleo languages
were used to support model-to-model and model-to-text
transformations, respectively. The approach proposed in this
paper is developed based on the work presented in [15].

B. Statistical Process Control

The Statistical Process Control (SPC) is a set of strategies
to monitor processes through statistical analysis of the
variability of attributes that can be observed during the
process execution [18] [10] [19] [20]. In terms of SPC, the
sources of variations in the process are encompassed in two
types: (i) common source of variation and (ii) special source
of variation.

The difference between the common and special source
of variation is that the former always arises, as a part of the
process, while the later is a cause that arises due to special
circumstances that are not linked to the process. For
example, a common variation on development productivity
could be caused by differences in programming experience
between developers. On the other hand, a special variation
could be caused by a lack of training in a new technology.
As special sources of variation are usually unknown, their
detection and elimination are important to keep the quality
and productivity of the process.

Control charts, also known as Shewhart charts, are the
most common tools in SPC used to monitor the process and
to detect variations (outliers) that may occur due to a special
source of variation. The use of control charts can classify

variations due to common or to special causes, allowing the
manager to focus on variations from special causes. The
control chart usually has thresholds at which a metric of the
process is considered as an outlier. Those thresholds are
called Upper Control Limit (UCL) and Lower Control Limit
(LCL). One pair of UCL and LCL are defined based on the
statistical analysis of historical data or based on expert
opinion, being used to identify the outliers. However, other
pairs can be defined to highlight, for instance, limits that
should be respected due to client requirements, such as
process productivity (function points implemented per week,
etc.) or quality (number of escaped defects, etc.).

Despite the known benefits of using SPC to monitor

software processes in order to detect problem during process

execution, this task in practice is still very arduous. The

software project manager needs to know not only the

statistical foundation, but also understand and manipulate

statistical tools for the generation of graphics and

information necessary for monitoring the processes. To

reduce these problems in using SPC, the approach suggested

here minimizes the work of the project manager by

transparently integrating the use of statistical tools for

monitoring the process execution in a workflow system.

Furthermore, this automatic control enables continuous

recalibration of the control limits, according to the changes

occurring in the process performance, and ensures the correct

use of statistical techniques.

III. SOFTWARE PROCESSES MONITORING USING SPC

INTEGRATED IN WORKFLOW SYSTEMS

A. Approach Overview

The approach proposed in this paper is organized in six
steps, as shown in Figure 1 and detailed next.

1) Process Modelling and Definition
The first approach step is directly related to the software

process definition. At this stage one should use a process
modeling language (SPL) to specify the process to be
monitored. As described in Section IV, the current
implementation of our approach provides support to the
process definition using the EPF framework. EPF offers
features and functionalities for the process definition and
modeling through the use of the UMA process modeling
language (Unified Method Architecture) [21], which is a
variant of the SPEM (Software Process Engineering Meta-
Model) [22]. Existing process frameworks such as OpenUP
[23] (available in the EPF repository) can be reused and
customized to define new software process, reducing the
costs of this activity.

2) Metrics Modelling and Definition

After the process modeling and definition, it is necessary
that process engineers specify the metrics to be collected and
monitored during the process execution. Each metric must be
defined and associated with one or more activities of the
monitored process. The definition of this association is
accomplished by specifying the activities that produces each
metric, which are modeled using the following meta-model
[15].

3) Workflow Generation
To enable the process execution in a workflow system,

supporting the automatic collection of defined metrics, a
model-to-model (M2M) transformation is performed to
generate the JPDL workflow elements from EPF process
elements. This transformation is responsible for the
generation of actions that allows the automated collection of
metrics during the execution of the process activities in the
workflow system. In addition, the transformation also
generates web pages that will be used for interaction with the
process users.

4) Workflow.Deployment and Execution
After generating the workflow and other configuration

files, the jBPM workflow engine is used to support the
software process execution. It allows project managers to
visualize the process execution in real-time and be aware of
what is happening during the project development in order to
take decisions. They can know, for instance, what activity
each member of the project is performing, as well as the
status of project activities (performance, quality, etc.) based
on the collected metrics.

5) Automatic Activities Monitoring
Monitoring software processes in an automated manner

allows greater control of the process by the project manager.
This approach, as presented in [15], allows the project
manager to automatically monitor the project's progress by
viewing web pages and exploring information about the
previously defined metrics. These pages provide status
information of the process and also the values of the metrics
collected dynamically. During the workflow execution, at the
end of each task defined in the metrics model, its duration is

calculated by performing an action fired after an end-task
event, and this value is stored and displayed to the project
manager.

The project manager can use the collected data to support
continuous process improvement and contingency actions,
avoiding the occurrence of future problems. Examples of
information that can be provided by such metrics are: the
execution time of each task step; which task step has a longer
duration in the timeline; what is the estimation accuracy;
quality or productivity benchmarks, such as function point or
use case point per man-hour.

6) Statistic Process Control in Workflow Systems
 Our approach promotes the integration of statistical

process control into workflow systems. To enable automatic
monitoring using SPC, at the end of each monitored task in
the workflow, the new value obtained is compared to the last
ones in order to determine if it is within the expected range
defined for the statistical control. In other words, the
observed value for the metric is compared to the LCL and
UCL values. If the observed value is lower than the LCL or
greater than the UCL, a warning message is issued for the
project manager to analyze the cause of this outlier (values
significantly different from the expected).

To calculate and implement the control limits, one
possible way is the following (other procedures can also be
implemented):

(a) If there are not historical data, it can be used
expertise to set limits on changes expected for each metric;

(b) If there are historical data, calculates the range as
follows:

(i) If the data distribution follow the normal distribution
(as verified by statistical tool integrated with monitoring),
uses a number of standard deviations, which by default is
3 (includes approximately 99.7% of the population data)
and that can be changed by the user to increase or
decrease the range. Increasing the range is meant to
include more extreme values that could be the problem
and will not generate warning. On the other hand,
increasing the range reduces the amount of false-positive
(indicating problems that are not a problem);
(ii) if the system does not identify the normal
distribution, uses the Chebyshev's theorem to calculate
the number of standard deviations to cover the same
99.7% of the population data;
In both cases (i) and (ii), the user can make adjustments
to the number of standard deviation to be considered.
Based on that, the tool indicates the percentage of data
encompassed (expected/normal values) according to data
distribution observed. The user can also indicate a
percentage of interest and the number of standard
deviations that should be used will be calculated by the
tool.
To facilitate the monitoring and visualization of attributes

being monitored, an X chart is updated on the screen of the
project manager after each new collected value. The outliers
are shown in red color in the graphic, representing a possible
anomaly.

After the collection of new values, they become part of
the historical basis of the process, contributing to the

Figure 1 Approach Overview

adjustment of LCL and UCL values, the known dynamically
tuned monitoring sensibility promoted by SPC. Outliers
representing problems occurred in the process are not
considered for this adjustment, since other occurrences
should also be detected.

IV. APPROACH IMPLEMENTATION

The implementation of our approach was accomplished

through the integration of the JBPM workflow engine with

the computational statistics tool R [24]. This integration is

implemented with the API Java/R Interface (JRI) [25] that

enables R function calls within Java code, which is the

language used by JBPM. Figure 2 illustrates the approach

implementation.

During the M2M and M2T transformations, events and

actions handlers are generated and they are responsible for

collecting data during workflow execution according to the

metrics defined in the model. These action handlers call the

R statistical functions to build process control charts

(Shewhart, Cusum etc.). However, these functions return

specific R charts implementations that need to be treated in

the Java code in order to be displayed by jBPM. To enable

the Java interpretation of these graphics, an R library called

Java Graphics Device (JavaGD) [26] is used. This library

provides Java canvas objects equivalent to the graphics

produced by R. Once the canvas objects are obtained, they

can be treated and transferred to a view framework such as

the JavaServer Faces (JSF) [27] used by jBPM.

V. APPROACH IN ACTION

 To illustrate the approach proposed in this paper, we

present the modeling of a software process and its metrics

according to the approach depicted in [15]. The following

subsections will describe the approach in action following its

respective steps presented in Figure 1.

1) Process and Metrics Modelling (Steps 1 and 2)

The process modeled to illustrate the approach is an

OpenUP based process and it is presented in Figure 3. The

metrics were modeled to monitor the highlighted activities

identify and refine requirements and develop solution

increment, aiming collecting the time spent in each activity.

2) Workflow Generation and Execution (Steps 3 and 4)

 Once the two model transformations were held and the

workflow was deployed in the jBPM engine, the workflow

may be calibrated with historical organizational information

regarding the metrics before starts the process execution. For

example, if the metric is about implementation, then the

calibration information would be the time developers take to

implement simple or complex functionalities. Also, the limits

must be specified and may attend the project requirements of

quality or productivity. This is an important step as the

approach intends to alert deviations along the process

execution and needs to know if a collected metric value is a

Figure 2 Approach Implementation

Figure 4: Requirement Elicitation Metric Collection

Figure 3: Process Fragment Example

deviation indeed.

3) Automatic Monitoring and Statistical Process

Control (Steps 5 and 6)
At this stage, the X chart is generated and the value of the

attribute is graphed on the project manager screen at the end
of each monitored activities instances. In the graphic, the x-
axis represents the activities instances and the y-axis
represents the attribute values collected. Figure 4(a) depicts
the first collection of the time spent per use case metric after
the calibration step. Note that the new collected value fits in
the Upper Control Limit (about 6 days) and the Lower
Control Limit (about 13 days). One can also include new
limits to represent specific user quality requirement. During
the process execution, the limits (UCL and LCL) can be
recalculated including the value of the last execution to
reflect adjustments made possible in the process at runtime.
Figure 4(b) illustrates a case where the collected value
supersedes the upper control limit. This fact could be
explained, for example, as a case when the development
company is eliciting requirements to a new business that was
not explored in previous projects. In that case, the workflow
can trigger a warning notification to interested stakeholders
(e.g. an e-mail to a project manager) in order to help
planning scope, resources or deadline changes and avoid
unwanted situations such as iteration or deployment delays.

Figure 5(a) and Figure 5(b) depict the collect values for
the implementation time per use case metric. In contrast to
Figure 4(b), Figure 5(b) shows one case that the value is
beyond the lower control limit. This could happen, for
example, because of the development of a new functionality

that is very simple compared to the functionalities previously
developed (e.g. the implementation of a simple CRUD or a
simple login functionality), or a case when the developer did
not perform other related fundamental activities like testing
or documentation. In some cases, the productivity value is
just suffering a natural change and for this reason the control
limits must be adjusted accordingly. Figure 6 shows the
limits adjustment in which the LCL and UCL were updated
to handle the new values of the productivity shift that may be
caused by the process improvement or maturation.

The current implementation presented in this work
supports only the X charts, but the integration between other
control charts (e.g. CUSUM) and workflows is also possible.

VI. RELATED WORK

Several studies have been proposing and discussing the
use of SPC in software process management to promote
continuous improvement. Baldassarre et al [18] discuss the
use of SPC from the results found after empirically use this
technique in the industry. The paper discusses four
synthesized major problems encountered in the software
process monitoring showing how SPC can answer each one.
It contributes for guiding practitioners towards a more
systematic adoption of SPC. Komuro [20] describes
experiences of applying SPC techniques to software
development processes showing several real examples. The
paper points out issues that need to be addressed in order to
apply SPC and shows that the key for the successful process
improvement is the alignment with business goal.

However, these related works mainly emphasize how to
adapt SPC to control software projects and also point out its
advantages and disadvantages. None of them focuses on the
automated support for monitoring of software processes. Our
approach provides support to the automatic and statistical
monitoring of software processes in workflow systems
through the generation and customization of software
processes in workflow systems. The automatic monitoring
using SPC transparently during the execution of the process
in workflow systems contributes directly to minimizing the
complexity issues traditionally involved in work with
statistical tools in software projects.

VII. CONCLUSION

In this paper, we have proposed an approach that
integrates statistical process control with workflow systems
to monitor software processes. The use of workflow systems

Figure 6: Development production shift

Figure 5: Development Time Metric Collection

to our integration promotes the collection and analysis of
metrics quickly and automatically, adds the benefits of
statistical process control without the additional effort to
integrate and use statistical tools, and enables the automatic
recalibration of the control limits used. Our proposal allows
project managers to identify problems early during the
process execution, enabling quickly reactions (process
improvements, training, etc) to reduce costs and ensure
software quality, in other words, allows the fast monitoring.
In addition, it also reduces the effort to use automatic
monitoring and SPC in an integrated manner.

Currently, our model-driven framework is being increased
and adapted to also support process monitoring of software
engineering experimental studies. The process monitoring in
this domain is fundamental to identify problems that could
invalidate all the collected data and study conclusions. If the
problem is identified early, actions can be performed to
correct the problem, avoiding the loss of all data and giving
to the software researcher a chance to better understand the
software engineering technique, method or process under
investigation.

REFERENCES

[1] IBM. (2010) Rational Method Composer. [Online]. [Online].

http://www-01.ibm.com/software/awdtools/rmc

[2] Eclipse Foundation. (2009) Eclipse. [Online].

http://www.eclipse.org/epf/

[3] IBM. Rational solution for Collaborative Lifecycle Management.

[Online]. https://jazz.net/projects/rational-team-concert/

[4] R. Bendraou, J.M. Jezequel, and F. Fleurey, "Achieving process

modeling and execution through the combination of aspect and

model-driven engineering approaches," in J. of Softw. Maintenance

and Evolution: Research & Practice Preprint., 2010.

[5] R. Bendraou, J.M. Jezequel, and F. Fleurey, "Combining Aspect and

Model-Driven Engineering Approaches for Software Process

Modeling and Execution," in Proc.Intl. Conf. on Softw. Process.

Vancouver, Canada, 2009, pp. LNCS, vol. 5543, pp. 148-160.

[6] Rita Suzana Pitangueira Maciel, Bruno Carreiro da Silva, Ana

Patrícia Fontes Magalhães, and Nelson Souto Rosa, "An Integrated

Approach for Model Driven Process Modeling and Enactment," in

XXIII Simpósio Brasileiro de Engenharia de Software, 2009.

[7] W.A. Shewhart, Statistical Method from the Viewpoint of Quality

Control. Mineola, New York: Dover Publications, 1986.

[8] J C Benneyan, R C Lloyd, and P E Plsek. (2012, Feb.) Statistical

process control as a tool for research and. [Online].

http://qualitysafity.bmj.com

[9] F ZORRIASSATINE and J. D. T. TANNOCK, "A review of neural

networks for statistical," Journal of Intelligent Manufacturing, pp.

209-224, 1998.

[10] Monalessa Perini Barcellos, Ana Regina Rocha, and Ricardo de

Almeida Falbo, "Evaluating the Suitability of a Measurement

Repository for Statistical Process Control," International

Symposium on Empirical Software Engineering and Measurement ,

2010.

[11] E. Di Nitto, A. Fuggetta G. Cugola, "The JEDI event-based

infrastructure and its application to the development of the OPSS

WFMS," IEEE Trans. Softw. Eng., vol. 27, pp. 827-850, 2001.

[12] X. Franch and J. Rib, A Structured Approach to Software Process

Modelling.: in Proceedings of the 24th Conference on

EUROMICRO - Volume 2, 1998, pp. 753-762.

[13] S.-C. Chou, A process modeling language consisting of high level

UML diagrams and low level process language.: Journal of Object-

Oriented Programming, vol. 1, no. 4, pp. 137-163, 2002.

[14] R. Bendraou, M-P. Gervais, and X. Blanc, "UML4SPM: An

Executable Software Process Modeling Language Providing High-

Level Abstractions," 10th IEEE International Enterprise Distributed

Object Computing Conference, pp. 297-306, 2006.

[15] Marília Freire, Fellipe Aleixo, Kulezsa Uira, Eduardo Aranha, and

Roberta Coelho, "Automatic Deployment and Monitoring of

Software Processes: A Model-Driven Approach," in Conference on

Software Engineering and Knowledge Engineering, Miami/Florida,

2011.

[16] JBOSS. jBPM Process Definition Language (JPDL). [Online].

http://docs.jboss.org/jbpm/v3/userguide/jpdl.html

[17] JBOSS. JBoss jBPM. [Online]. http://www.jboss.org/jbossjbpm/

[18] Maria Baldassarre, Nicola Boffoli, Giovanni Bruno, and Danilo

Caivano, "What Statistical Process Control can really do for

Software Process Monitoring: lessons from the trench," in

Trustworthy Software Development Processes.: Springer Berlin /

Heidelberg, 2009, pp. 11-23.

[19] Nicola Boffolli, G. Bruno, D. Caivano, and G Mastelloni,

"Statistical process control for software: a systematic approach.," in

ESEM, 2008, pp. 327-329.

[20] Mutsumi Komuro, "Experiences of applying SPC techniques to

software development processes," in Proceedings of the 28th

international conference on Software engineering, New York, NY,

USA, 2006, pp. 577-584.

[21] Eclipse. Eclipse EPF Project. [Online].

http://epf.eclipse.org/wikis/openupsp/base_concepts/guidances/conc

epts/introduction_to_uma,_94_eoO8LEdmKSqa_gSYthg.html

[22] OMG. Software Process Engineering Meta-Model. [Online].

http://www.omg.org/technology/documents/formal/spem.htm

[23] IBM Corp. (2009) OpenUP Process Version 1.5.0.4. [Online].

http://epf.eclipse.org/wikis/openup/

[24] Wien, Institute for Statistics and Mathematics of the WU. (2012,

Fevereiro) R project. [Online]. http://www.r-project.org/

[25] RForge.net. (2012, Fevereiro) JRI - Java/R Interface. [Online].

http://www.rforge.net/JRI/

[26] S. Urbanek. (2012, Fevereiro) JavaGD. [Online].

http://rosuda.org/R/JavaGD/

[27] Java Community. (2012, Fevereiro) JavaServer Faces. [Online].

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-

139869.html

[28] Weller, E.F.; Bull HN Inf. Syst., Phoenix, AZ , "Practical

applications of statistical process control [in software development

projects] ," Software, IEEE, vol. 17, pp. 48-55, May/Jun 2000.

[29] Eclipse. Acceleo. [Online]. http://wiki.eclipse.org/Acceleo

[30] Geppert A, Tombros D, "Event-based distributed workflow

execution with EVE," Middleware’98 Workshop, 1998.

file:///C:/Users/Daniel/Desktop/Seke%202012%20final/%5bOnline%5d.%20http:/www-01.ibm.com/software/awdtools/rmc
file:///C:/Users/Daniel/Desktop/Seke%202012%20final/%5bOnline%5d.%20http:/www-01.ibm.com/software/awdtools/rmc
http://www.eclipse.org/epf/
https://jazz.net/projects/rational-team-concert/
http://qualitysafity.bmj.com/
http://docs.jboss.org/jbpm/v3/userguide/jpdl.html
http://www.jboss.org/jbossjbpm/
http://epf.eclipse.org/wikis/openupsp/base_concepts/guidances/concepts/introduction_to_uma,_94_eoO8LEdmKSqa_gSYthg.html
http://epf.eclipse.org/wikis/openupsp/base_concepts/guidances/concepts/introduction_to_uma,_94_eoO8LEdmKSqa_gSYthg.html
http://www.omg.org/technology/documents/formal/spem.htm
http://epf.eclipse.org/wikis/openup/
http://www.r-project.org/
http://www.rforge.net/JRI/
http://rosuda.org/R/JavaGD/
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://wiki.eclipse.org/Acceleo

