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Abstract. Internet of Things (IoT) devices are prevalent in all aspects
of our lives, e.g., thermostat and smart lights. Nowadays, IoT devices
are controlled by various end-user applications. There is a lack of a stan-
dard interface that allows the communication among various IoT devices.
In this context, the functionalities of IoT devices may be published as
IoT services. IoT services are RESTful services that connect to IoT de-
vices. The uniform interface of IoT services allows them to be integrated
with existing applications. We propose an approach that automatically
transforms functionalities of IoT devices to IoT services hosted on the
cloud. Our approach identifies the code methods from IoT applications
that have to be transformed and also extracts service specifications (e.g.,
input / output parameters) from these methods. Our case study result
shows that our approach obtains a precision and a recall above 70%.
The identified methods and service specifications are converted to IoT
services. Our approach generates IoT services with an accuracy of 96%.
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1 Introduction

The inter-connected physical devices, i.e., the Internet of Things (IoT) devices,
are prevalent in several aspects of our lives. For example, IoT devices may sense
nearby environments (e.g., obtain the temperature) and react upon an end-
user’s request to change the physical environment (e.g., turn on the light). IoT
applications are designed by application developers to provide functionalities
in IoT devices, e.g., to sense the temperature. In the meanwhile, the Internet
has turned into a global infrastructure to host heterogeneous web services. End-
users may use web services to perform various on-line activities, such as on-
line shopping and banking. With web services and IoT devices combined, the
possibilities to ease our daily lives increase in magnitude. For instance, an on-line
grocery order can be made based on a food consumption alert that is triggered
by analyzing the data read from a fridge sensor. However, this combination is
not without its limitations. For example, end-users must install a large number
of proprietary end-user applications (e.g., mobile applications) on smart phones



or computers to access the information of IoT applications in IoT devices. In
addition, the diverse end-user applications lack a standard interface to allow the
communication among various IoT devices and web services. Therefore, it is not
trivial to integrate IoT devices with existing applications [15].

To ease the integration of IoT applications, we are interested in transforming
IoT applications to IoT services, using the service-oriented architecture (SOA)
to provide the functionalities offered by IoT devices. In particular, SOA based
IoT services have two main advantages: (1) interoperability, which allows IoT
services to exchange information with web services using a structured data for-
mat; (2) easy integration with existing applications due to the uniform interface
of IoT services. Research effort has been invested on approaches to provide IoT
services for end-users [4][9][15]. Nonetheless, most of these approaches run the
IoT services on the IoT devices [4][9][15], which are not optimal, since IoT de-
vices are typically designed with limited resources, e.g., low battery capacity
and processing power [15]. In addition, the complexity of SOA standards (e.g.,
the verbose data format) generates energy and latency overheads in IoT devices
that lead developers to spend extra effort when designing IoT services.

To overcome these practical limitations, we focus on automatically transform-
ing the functionalities of IoT devices to IoT services. IoT services are designed
using the RESTful paradigm. We use the cloud platform to host IoT services.
In contrast to the resource limited IoT devices, the cloud platform has mas-
sive storage, high speed network and huge computing power. Furthermore, the
cloud platform has the potential to host numerous IoT services and connect IoT
devices as well as processing IoT data [16]. Additionally, the functionalities of
IoT devices may be managed by standard APIs over the cloud, which may be
accessed by end-users from any place.

More specifically, we analyze the source code of IoT applications to identify
methods that can be controlled or accessed by end-users. Our approach further
extracts the service specifications of the corresponding IoT services. A service
specification describes the interface of an IoT service and is composed of three
parts: service name, HTTP function and input (or output) parameters. To allow
developers to modify the generated service specifications, we also propose a ser-
vice schema that describes the service specifications of IoT services. The service
schema identifies which data of IoT devices that should be stored in the cloud.
Moreover, we use the service schema to instantiate IoT services with friendly
user interfaces.

We evaluate the effectiveness of our approach through two case studies. Our
results reveal that we can identify code methods that should be transformed with
a precision of 75% and a recall of 72%. We can also extract service specifications
from the source code of IoT applications with a precision of 82% and a recall
of 81%. Our approach generates IoT services from IoT applications with an
accuracy of 96%. These results show that our approach can accurately transform
IoT device functionalities to IoT services.

Paper Organization. In Section 2, we present the background of the paper.
In Section 3, we give an overview of our approach to generate IoT services. In
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Section 4, we describe our case studies. We summarize the related research in
Section 5. Finally, we conclude our work in Section 6.

2 Background

In this section, we provide background material about IoT devices, web ser-
vices, the programming structure of the source code of IoT applications and IoT
services.

2.1 IoT Devices

An IoT device is a physical item that is embedded with a computing system and
can be controlled remotely through Bluetooth or Wi-Fi. In our approach, we con-
sider three classes of IoT devices: sensors, actuators and composite devices [11].
A sensor can measure the physical properties of a physical environment at a
constant frequency, while an actuator is an IoT device that is controlled by end-
users who may change some of its physical properties. For example, a sensor can
sense the temperature, while an actuator can receive a command to turn on the
light. Finally, a composite device is composed of both sensors and actuators. For
example, a thermostat is an IoT device which senses the temperature and may
be requested to change the temperature.

2.2 Web Services

A web service is a software component that allows machine-to-machine commu-
nication through the world wide web. This communication may be implemented
using the Representational State Transfer (REST) [17] architecture style. REST-
ful services typically use HTTP as the underlying protocol to transfer resources.
A resource is located by a Universal Resource Locator (URL). Resources may
have various representations, e.g., JSON and XML. To use the resources that
are available in the web, clients (i.e., applications) send requests using HTTP
functions. The available HTTP functions are GET, POST, PUT and DELETE.
The GET function requests a read only access to a resource, while the POST
function is used to create a new resource. The PUT function is used to update
an existing resource, while the DELETE function is used to remove a resource.

2.3 Programming Structure of the Source Code of IoT Applications

The methods in the source code of IoT applications can be classified into two
types: internal methods and external methods. An internal method is related
to the set up of an IoT device and is only consumed by methods within the
IoT device (e.g., an init method to set up an IoT device). An external method
works as an IoT device interface that can communicate with the cloud. The
input variables of an external method may represent the input commands of an
actuator (e.g., to turn on the light), while the returned variables may represent
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the sensed data of a sensor (e.g., the sensed temperature). Since an external
method allows end-users to control an IoT device or obtain information from an
IoT device, it is possible to transform such a method to an IoT service.

def led_control(status ):

if status == "ON":

turn_led_on ()

elif status == "OFF":

turn_led_off ()

(a) External method 1

def getTemperature ():

temp ← methods to get

temperature

return temp

(b) External method 2

Fig. 1: Examples of external methods

Figure 1 shows examples of external methods that are extracted from the
hackster.io website.1 Hackster.io is a website that shares projects on embed-
ded devices (e.g., Raspberry Pi). In Figure 1, the names of the methods describe
the methods’ intent (i.e., led control and getTemperature). The led control

method2 (Figure 1a) can receive commands from the cloud (i.e., by using the
status variable). This method uses an if-else statement to identify whether
the led has to be turned on or off depending on the status variable. The
getTemperature method3 (Figure 1b) retrieves the temperature from a sensor.
A developer can define methods within the external method to send the sensed
temperature values to the cloud, e.g., send(temperature, url). Table 1 shows
the service specification that may be extracted from the two example methods.

Table 1: Service specification that is extracted from the external methods in Figure 1
Method Name Service Name HTTP Function Input Parameters Output Parameters

led control led control POST status

getTemperature getTemperature GET temp

2.4 IoT Services

An IoT device may have multiple functionalities. For instance, an indoor sensor
may sense both temperature and humidity. A functionality may be implemented
by one or more external methods. In our approach, each functionality of an IoT
device is transformed to an IoT service, which is hosted on the cloud platform.
The cloud platform may use various networking protocols to exchange data with
IoT devices, such as MQTT [12]. MQTT is a lightweight publish-subscribe mes-
saging protocol designed for exchanging real-time IoT data.

3 Overview of Our Approach.

In this section, we present our approach to automatically generate IoT services
from IoT applications. Figure 2 shows an overview of our approach. Our approach
has four activities. Each activity is explained in a subsection below.

1 https://www.hackster.io/
2 https://www.hackster.io/user3424878278/pool-fill-control-119ab7
3 https://www.hackster.io/dexterindustries/add-a-15-display-to-the-raspberry-pi-

b8b501
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Fig. 2: An overview of our approach

3.1 Identifying External Methods

To save developers’ effort on manually finding code methods that should be
transformed, we analyze the source code of IoT applications written in Python to
investigate whether external methods can be automatically identified. We choose
the Python language, since it is suitable for developing IoT applications due to
its portability and easy-to-learn syntax [21]. Although our approach is language-
independent, we use Python examples to explain our approach implementation.
We explain the steps that are involved in this code analysis below.

STEP1: Parsing Source Code of Methods. To identify external methods,
we first analyze the Abstract Syntax Tree (AST) of the source code. An AST
is a tree structure that represents the syntax of the source code. Each node in
the tree describes a construct (e.g., method name) that is present in the source
code. We traverse the tree to identify the following constructs in a method:

– method name, e.g., getTemperature shown in Figure 1b.
– input variables, e.g., status shown in Figure 1a.
– returned variables, e.g., temp shown in Figure 1b.
– method calls in a method body, e.g., turn led on() shown in Figure 1a.
– if-else statements, e.g., if status == "ON" shown in Figure 1a.

STEP2: Filtering Internal Methods. An internal method can be identified
based on its extracted constructs. Methods with the following internal features
(IF) are considered as internal methods. Internal methods are filtered out and
are not investigated further.

– IF1: method name containing the keywords “init, setup, debug, test”. Method
names containing the keywords “init” and “setup” are initialization methods
and are used to configure the initial settings, e.g., setting the voltage level
of GPIO pins. Method names containing the keywords “debug” and “test”
are testing methods, which are used to test the different functionalities of an
IoT device. Such testing methods are internal methods in an IoT device.

– IF2: method name starting with “ ”. The leading underscore in a method
name denotes that the method is for internal use or reserved for the pro-
gramming language (e.g., an init method) [1].

– IF3: methods that are called within internal methods or defined in internal
files. File names containing the keywords “init, setup, debug, test” or starting
with “ ” are internal files. Methods that are called within internal methods
or defined in internal files are used for initialization and testing.

STEP3: Processing Method Names. A method name may convey the intent
of the method, which can be used to distinguish external methods from internal
methods. To identify the semantics of method names, we use the following steps
to normalize these names. We split CamelCase words (e.g., getTemperature is
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split into get and temperature). We remove the punctuation, e.g., “ ” and “-”.
We also remove the suffixes that contain numbers (e.g., led1 is normalized into
led). Finally, we remove stop words (e.g., “a”, “the” and “is”). We use natural
language processing (NLP) techniques to identify the part-of-speech (POS) tag
of each word. For example, “get” is tagged as a verb and “temperature” is
tagged as a noun. Finally, we perform word stemming to find the root words
(e.g., “reduced”, “reducing” and “reduces” are normalized to “reduce”). These
words are used to extract features for identifying external methods.

STEP4: Extracting Features for External Methods. We extract the fol-
lowing external features (EF) based on the constructs of the methods that are
identified in STEP 1.

– EF1: method calls. If the methods that are called within a method body con-
tain send related keywords in their names, i.e., “push, post, publish, send,
notify”, these methods likely send data to the cloud, e.g., send(temperature,
url) and are considered as external methods.

– EF2: if-else statements. In case a method contains if-else statements that
react to the input variables of the method when receiving commands from the
cloud, such a method has a high probability of being an external method. For
example, the led control method in Figure 1a contains if-else statements
that react to changes in the status variable.

– EF3: semantic of verbs. Verbs in method names may represent the action
that is performed in a method. For instance, control and get are the verbs in
the examples of Figure 1. We identify the semantic of verbs to infer external
methods. For example, if a verb has keywords that are related to sending
and receiving messages (i.e., “push, post, publish, send, notify, subscribe, get,
sense, set, receive, control”), we infer that its respective method transmits
data to the cloud. These methods are likely external methods.

– EF4: semantic of nouns. Nouns in method names denote the objects of in-
terest of these methods, e.g., led and temperature are nouns in the examples
of Figure 1. If these nouns match with IoT service names, their respec-
tive method is likely an external method. We identify IoT services by using
the iotlist.co4 website. This website lists various IoT devices, e.g., security
cameras and smart lights. For an IoT device, we manually extract their func-
tionalities, each one corresponding to an IoT service name. For example, the
Elgato Eve Room Wireless Indoor Sensor5 will have the sense air quality,
sense temperature and sense humidity IoT service names. In total, we ex-
tracted 190 IoT service names. Next, we use the approach described in STEP
3 to extract nouns from the extracted IoT service names. We form a bag of
words containing the nouns and match them with the nouns that we find
in method names (see STEP 3). For instance, the Wireless Indoor Sensor
has a bag containing the air, quality, temperature and humidity words that
we match with the temperature word in the getTemperature method (see
Figure 1b).

4 http://iotlist.co/
5 https://www.elgato.com/en/eve/eve-room
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In our approach, we assume that a method is an external method if it has at
least two of the features that we identify in STEP 4. For example, the method
in Figure 1a is an external method, since it has the if-else statements (i.e., EF2 )
and semantic of nouns (i.e., EF4 ) features.

3.2 Extracting Service Specifications

Based on the analyzed external methods, we extract the service specifications
for their respective IoT services (see Table 1), i.e., service name, HTTP function
and input (or output) parameters.

We use the method name as the service name. For instance, led control is the
service name for the method in Figure 1a. Then, we use the external features
described in STEP 4 to distinguish HTTP GET and POST functions. Each
HTTP function is associated with two external features. Among these external
features, we split the semantic of verbs into semantic of send and semantic of
receive for GET and POST functions, respectively. We explain the details below.

– HTTP GET: is associated with the semantic of send and method calls fea-
tures. The semantic of send denotes that a verb in a method name contains
send related keywords, i.e., “push, post, publish, send, notify, get, sense”.
Such methods send data to the cloud, so that GET-based IoT services can
identify and retrieve this data.

– HTTP POST: is associated with the semantic of receive and if-else state-
ments features. The semantic of receive denotes that a verb in a method
name contains receive related keywords, i.e., “set, receive, control, sub-
scribe”. An IoT device receives commands from POST-based IoT services.

To determine which HTTP function should be associated with an external
method, we count the number of features that belong to an external method. If
an external method has a given feature, that feature has a counter of 1 (one).
We derive a score for the HTTP GET function (i.e., Sget) using Equation 1 and
a score for the HTTP POST function (i.e., Spost) using Equation 2.

Sget = Csemantic of send + Cmethod calls (1)

Spost = Csemantic of receive + Cif−else statements (2)

where Csemantic of send, Cmethod calls, Csemantic of receive and Cif−else statements

denote the counters for the respective features.
We use the Sget and Spost scores to determine whether the HTTP function

should be GET or POST, i.e., whichever has the highest value. In case Sget is
equal to Spost, we calculate the fan-in and fan-out of an external method [22].
Fan-in represents the number of input variables of an external method, while
fan-out denotes the number of returned variables of an external method. When
a fan-in to fan-out ratio is larger than one, the POST function is chosen, since
such a ratio indicates that an external method is written to receive data (see
led control in Figure 1a). The GET function is chosen otherwise.

Finally, the parameters of IoT services are extracted based on the identified
HTTP functions. For example, the returned variables of a GET-based external
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method are extracted as the output parameters of the corresponding IoT ser-
vice. Comparatively, the input variables of a POST-based external method are
extracted as the input parameters of the corresponding IoT service. As an ex-
ample, the status variable of the POST-based led control method (shown in
Figure 1a) is extracted as a service input parameter.

3.3 Representing External Methods in a Service Schema.

To transform external methods to IoT services, we need a structured data format
that describes the extracted service specifications of IoT services. We design a
service schema using the Web Ontology Language (OWL) [2]. In the service
schema, the identified service name, HTTP function and parameters of a service
specification are prefilled. A developer may validate, modify and complete the
service schema. Figure 3 shows how we use OWL to define our service schema.

The service schema is composed of four main components: classes, individu-
als, relations and attributes. A class represents a group of objects with similar
properties. For example, an IoT device is a class. A relation is used to connect
the components of our service schema (e.g., an IoT service hasOperations). A
class can be inherited by sub-classes. For instance, a reading operation, which is
used to get the latest value of a sensor, is a sub-class of operation. An individual
is an instance of a class. Finally, attributes declare the properties of a class. For
instance, the IoT device class has the device type and device id attributes. The
device type groups a number of IoT devices that provide similar functionalities.
For example, temperature sensor may be a device type. The device id attribute
is unique for each IoT device and is used to distinguish one IoT device from
another. The MAC address of an IoT device can be used as a device id.

A functionality of an IoT device publishes a single stream of scalar values
(e.g., temperature values) to a channel on the cloud [4]. The stream of scalar
values is considered as a resource of an IoT service. This resource is stored in
a resource database on the cloud. An IoT service identifies its resources using
the service name, device type and device id attributes. An IoT service provides
multiple operations to perform different actions onto a resource. For instance, the
IoT service “sense temperature” can obtain the latest reading of the temperature
and modify the frequency at which the temperature should be sensed. We identify
six operations of IoT services based on the approach proposed by Haggerty et
al. [4], i.e., reading, profile, sampling parameter, formatting, status and context.
Each external method falls in one of the operations specified in Table 2. The
reading operation is used to get the latest value of a resource. This operation
listens to an IoT service’s resource until a new value of that resource is received.

hasOperations

IoT DeviceIoT Device

Device Type

Device ID

IoT ServiceIoT Service

Service Name

Service Description

StatusStatus

ResponseResponse

Media type

ParameterParameter

Parameter Value

Parameter Name

Parameter Type

Label

Default Value

CSS Style

Parameter Description

Required

UnitUnit

Unit Value

CSS Style

Default Unit Value

FormattingFormattingProfileProfile ContextContextSampling 

Parameter

Sampling 

Parameter
ReadingReading

hasReqeuest

hasResponsehasServices

RequestRequest

HTTP Function

Media Type

OperationOperation

hasUnit

Input Type

Input Type

hasParameters

Fig. 3: The service schema
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<Device Type>/<Device ID>/<Service Name>/<Operation Name>

Fig. 4: The URL schema for accessing an operation.

Then, the listened value and a timestamp of the value update are returned to
end-users. The status operation returns the state of a given IoT service (e.g.,
whether it’s on or off). For actuators, an end-user may send a POST request to
the status operation, which changes the physical state of an IoT device (e.g., to
turn on the light). An operation is identified by the URL pattern (see Figure 4).

IoT devices with the same device type value correspond to one unique service
schema that is used to describe their respective IoT services. We use the service
schema to instantiate IoT services as we describe in Section 3.4.

Table 2: A summary of available operations for an IoT service
Operation

Name

HTTP

Function
Device Class Description Example

Reading GET sensor the latest reading temperature

Profile GET sensor a number of recent history readings
history temperature

readings

Sampling

Parameter
GET/POST sensor the sampling frequency of sensing 100Hz

Formatting GET/POST sensor the unit of the sensed value ◦C, ◦F

Status GET/POST sensor/actuator the state of the IoT service turn light on/off

Context GET/POST sensor/actuator the location of the measurement

the location that

the temperature

is being sensed

3.4 Transforming External Methods to IoT Services

In this section, we describe how our approach automatically transforms external
methods to IoT services.

STEP1: Generating Web Forms. Since end-users may not be familiar with
SOA, it is important to provide friendly user interfaces for accessing and con-
trolling IoT services. In this regard, our approach automatically generates web
forms by using our proposed service schema and form templates. A template
uses the data of a service schema to generate text output, e.g., source code or
HTML forms. These generated forms are used to send POST requests to IoT
services.

We design our form templates using the FreeMarker template engine.6 The
essential components of a web form are the HTTP function, the operation URL
and the parameters to be filled by end-users. We traverse the parameters in our
service schema to identify which ones have an input type attribute. The input
type attribute can assume one of the HTML input elements, i.e., text, radio and
select. The parameter value attribute (see Figure 3) defines the available options
of a parameter, which end-users can choose, e.g., ON or OFF. A developer may
define a CSS style for an input parameter using the CSS style attribute. Figure 5
shows an HTML form example for controlling a led. Once an end-user clicks on
the “Submit” button, a POST request is submitted to the operation URL.

6 http://freemarker.org/
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<form action="raspberrypi/b827ebf8f190/led_control/

status" method=POST>

    <label for="Control LED">Control LED</label>      

        <input type=radio name=status value=ON>ON

        <input type=radio name=status value=OFF>OFF

        <br>

   <input type="submit" value="Submit"/>

</form>

Operation URL: <Device Type>/<Device ID>/<Service Name>/<Operation Name>

HTTP Method

Input Type Parameter Name Parameter Value

Label

a) An annotated screenshot of the generated HTML code b) The web form

Fig. 5: An annotated screenshot of a web form that is used to control a led. The blue
text highlights the data that is extracted from our service schema.

STEP2: Instantiating IoT Services. Our approach automatically generates
source code to instantiate IoT services using the proposed service schema and
code templates. The instantiated IoT services follow the Jersey7 syntax standard.

To instantiate an IoT service, a code template needs to be filled with the
information from a service schema. The required information are the HTTP
function, an operation URL, a request media type, a response media type and
the filled parameters from a web form. We provide code templates for each kind
of operation. In a reading template, a function is provided to listen to a resource
of an IoT service, which then responds end-users with the real-time value. The
resources of a given IoT service are located by the service name, device type and
device id that are extracted from the URL of the respective service request (see
Figure 4). Once the profile operation is requested, the IoT service fetches the
last N values of a resource from the database. The N value is specified by end-
users as a URL parameter. We also build databases on the cloud for each of the
other four operations, i.e., sampling parameter, formatting, status and context.
A GET request of an operation locates the respective database and retrieves the
data value. Figure 6 shows an example of an instantiated profile operation.

@Path("/raspberrypi/b827ebf8f190")

public class SensingActuatorService{

@GET

@Path("temperature/profile")

@Produces("application/json")

public Response get_temperature_profile(@DefaultValue(     @QueryParam( number   int 

                number){

JsonArray response = GetEvent.getEventFromDatabase("temperature", 

"raspberrypi", "b827ebf8f190", number);

return Response.ok(response.toString()).build();}}

Root URL: <Device Type>/<Device ID>

HTTP method

Operation URL: <Service Name>/<Operation Name>

The function to access database

Service Name, Device Type and Device ID

Response Media Type

Fig. 6: An annotated screenshot of the profile operation, which obtains the tempera-
ture. The blue text highlights the data that is extracted from our service schema.

For POST-based operations (e.g., POST status of light), the filled param-
eters (e.g., ON) must be sent to the respective IoT device. We traverse the
parameters of a service schema to identify which parameters end-users should
fill. Instantiated POST-based operations use their parameter names (e.g., status)
as variables that will retrieve the values that are filled in web forms.

Once end-users invoke an instantiated operation, the generated source code
of that operation is accessed by the operation URL and the HTTP function. The
data that is transmitted between an IoT device and the cloud follows the JSON
standard (i.e., JavaScript Object Notation), a lightweight data-interchange for-
mat [3].

7 https://jersey.java.net/
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4 Case Study.

We conduct a case study to evaluate our approach. In this section, we introduce
the setup of our case study and we present the obtained results.

4.1 Case Study Setup

To test the effectiveness of our approach on identifying external methods, we
analyze IoT applications written in Python. We collect the source code of IoT
projects in the “Raspberry Pi” category on the hackster.io website.8 The Rasp-
berry Pi is a credit-card-sized embedded device, which is widely used to develop
IoT solutions for home and industrial automation.

Table 3: The distribution of projects and python methods in each domain. Avg LOC
denotes the average lines of code for each project.

Domain
#

Projects

#

Methods
Avg LOC Domain

#

Projects

#

Methods
Avg LOC

Living 41 7,035 6,349
Environmental

Sensing
24 763 553

Transportation 10 387 756 Health 21 599 728

Entertainment 41 4,660 1,781 Security 22 1,122 870

Communication 18 2,612 3,891 Total 177 17,178 2,520

Fig. 7: A screenshot of our tool that
shows the available operations of IoT
services to end-users

In total, we collect 1,039 projects,
of which 177 contain python methods.
We collect a total of 17,178 python
methods from these projects. The col-
lected IoT projects have different do-
mains, e.g., living (e.g., light control),
communication (e.g., radio receiver)
and transportation (e.g., parking sys-
tem). Table 3 summarizes our col-
lected data. We built a prototype tool
as a proof of concept for our approach.
Our tool automatically analyzes IoT applications and generates the correspond-
ing IoT services based on the identified external methods. We use the Raspberry
Pi 3 Model B as our IoT device (denoted as RPi). The IoT device has a quad-
core processor running at 1.2GHz. We use the IBM cloud platform, which uses
the MQTT protocol to communicate with IoT devices. Since we are not allowed
to build customized IoT services in such a commercial cloud platform, we use our
approach to generate IoT services in our local server (see Section 3.4). Our server
transmits data of IoT devices with the IBM cloud platform using the MQTT
protocol. Figure 7 shows a screenshot of our prototype tool. An end-user may
click on an operation to send a GET request or retrieve a web form to submit a
POST request. Our case study answers the following research questions:

RQ1. How effective is our approach to identify external methods and extract
service specifications?

8 https://www.hackster.io/
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RQ2. How accurate is our approach to generate IoT services?
The first author manually evaluates all the results in our case study. Our eval-

uator has three years’ experience on building RESTful services for the service-
oriented architecture.

4.2 RQ1: How effective is our approach to identify external
methods and extract service specifications?

To measure the effectiveness of our approach, we randomly sample 376 methods
from the extracted 17,178 python methods with a 95% confidence level and a
5% confidence interval [25]. We apply our approach (as described in Section 3.1)
to identify external methods and extract service specifications from the sampled
376 methods. We use precision and recall as shown in Equations 3 and 4 to
evaluate our approach. Precision measures the ratio of correctly retrieved ex-
ternal methods (or service specification parts) from the set of external methods
(or service specification parts) that are retrieved by our approach [24]. On the
other hand, recall measures the ratio of external methods (or service specification
parts) from the dataset that our approach could retrieve [24].

Precision =
{relevant items} ∩ {retrieved items}

{retrieved items}
(3)

Recall =
{relevant items} ∩ {retrieved items}

{relevant items}
(4)

Our results reveal that our approach has an average precision of 75% and
a recall of 72% for identifying external methods. As for service specifications,
our approach has an average precision of 82% and a recall of 81%. The main
reasons for the misidentified external methods and service specifications are the
following: (1) We are not able to extract semantic meanings from method names.
For instance, the method getdoorstatus is an external method to get the door
status. However, we could not find the semantic of nouns and semantic of verbs
because this name does not follow the CamelCase pattern. (2) Internal methods
that transmit messages within an IoT device may have external features. For
example, the method SendParameter is an internal method that sends parame-
ters using the I2C (Inter-Integrated Circuit) protocol. However, we identify such
a method as an external method, since it contains the semantic of verbs and
if-else statements features. (3) The input (or output) parameters are defined in
the code method body. For instance, the method get ph reading has a service
parameter ph value. However, the method uses a print function to display the
parameter, rather than returning it.

4.3 RQ2. How accurate is our approach to generate IoT services?

Our approach uses a service schema to generate IoT services on the cloud plat-
form. The accuracy of transforming external methods to IoT services is what
represents the practical usefulness of our approach. To evaluate the accuracy of
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generating IoT services, we use the 190 extracted IoT services described in Sec-
tion 3.1. We design external methods on RPi depending on the type of an IoT
service. For example, we design four possible external methods for an IoT service
that is generated for a sensor. These methods are: reading, sampling parameter,
formatting and context. As for IoT services generated for actuators, we design
two external methods: status and context. We do not design an external method
for the profile operation, since a profile operation is instantiated to fetch a re-
source from a resource database. We use the approach described in Section 3.3 to
generate service schemas for the designed external methods. We automatically
generate IoT services using our approach (see Section 3.4). Equation 5 shows
how we measure the accuracy of our approach.

Accuracy =
{#correctly generated IoT services}

{#IoT services}
(5)

The accuracy is the ratio of the number of correctly generated IoT services to
the total number of IoT services. Since an IoT service is composed of several
operations, we evaluate whether an operation is correctly instantiated. A GET-
based operation is correctly instantiated if, for example, a GET request for the
temperature reading operation returns the values that match the temperature
values sent from RPi. A POST-based operation is correctly instantiated if, for
example, the external method on RPi that is used for receiving light status re-
ceives the commands from the light status operation. An IoT service is correctly
generated when all the operations of such an IoT service are correctly instanti-
ated. Our approach achieves an accuracy of 96% (182 out of 190 IoT services)
when generating IoT services. Nonetheless, our approach fails to generate IoT
services regarding streaming media. A streaming media IoT service constantly
delivers and presents multimedia, e.g., video and audio, to end-users. We do not
find support in the IBM cloud platform for streaming media of IoT devices.

5 Related Work

We summarize the related work on the service-oriented architecture for IoT
devices and code analysis.

5.1 Service-oriented architecture for IoT devices

Service-oriented architecture (SOA) [22] is widely used to represent function-
alities of IoT devices [13]. Haggerty et al. [4] and Guinard et al. [10] design
IoT services using the RESTful paradigm. Priyantha et al. [15] propose an ap-
proach to reduce the resource consumption when running IoT services on IoT
devices. The aforementioned approaches build IoT services directly on the re-
source constrained IoT devices. In contrast to these approaches, we use the cloud
platform to run the IoT services. SOCRADES [9][20] describe IoT services using
the Device Profile for Web Services (DPWS), a service description language.
Other approaches [7][8][27] model IoT services using ontology languages, such as
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OWL-S. These service models are used to aid the service discovery and selection.
Different from the existing approaches, our approach designs the service schema
for the automatic service generation to relieve extra effort to build SOA.

5.2 Code analysis

Code analysis is widely used to aid software understanding and maintenance. For
example, Eaddy et al. [5] and Robillard et al. [18] analyze the dependency and
relationship of program elements (e.g., class and method) to identify the source
code that is related to a maintenance task. Eisenbarth et al. [6] conduct static
and dynamic code analysis to focus on the source code that is related to system
features. Zhou et al. [26] and Wong et al. [23] locate source code files that are
related to faults in bug reports. Pollock et al. [14] use natural language process-
ing techniques to understand the semantic meanings of literals, identifiers and
comments to aid the source code searching. Shabtai et al. [19] extract features
from the source code to classify Android applications. Unlike these approaches,
our approach conducts a static code analysis on the method level to identify
external methods and extract service specifications for IoT services.

6 Conclusion

To enable the integration of multiple IoT devices in a uniform environment,
we provide an approach that automatically transforms functionalities from IoT
devices to SOA based IoT services. We also automatically generate web forms for
end-users to have a friendly experience when interacting with IoT services. We
use the designed service schema and templates to generate IoT services. Our case
studies show that we can identify external methods from IoT applications with
a precision of 75% and a recall of 72%. We can also extract service specifications
from these external methods with a precision of 82% and a recall of 81%. Our
approach can generate IoT services with an accuracy of 96%.

In future work, we plan to extend the implementation of our approach to
other popular programming languages, such as Java and JavaScript. We also
plan to ask developers to use and verify our prototype tool.
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