
Studying the Impact of Adopting Continuous Integration on the
Delivery Time of Pull Requests

João Helis Bernardo
Federal Institute of Rio Grande do Norte

Pau dos Ferros, Brasil
joao.helis@ifrn.edu.br

Daniel Alencar da Costa
Queen’s University
Kingston, Canada

daniel.alencar@queensu.ca

Uirá Kulesza
Federal University of Rio Grande do Norte

Natal, Brazil
uira@dimap.ufrn.br

ABSTRACT
Continuous Integration (CI) is a software development practice
that leads developers to integrate their work more frequently. Soft-
ware projects have broadly adopted CI to ship new releases more
frequently and to improve code integration. The adoption of CI
is motivated by the allure of delivering new functionalities more
quickly. However, there is little empirical evidence to support such
a claim. Through the analysis of 162,653 pull requests (PRs) of 87
GitHub projects that are implemented in 5 different programming
languages, we empirically investigate the impact of adopting CI
on the time to deliver merged PRs. Surprisingly, only 51.3% of the
projects deliver merged PRs more quickly after adopting CI. We also
observe that the large increase of PR submissions after CI is a key
reason as to why projects deliver PRs more slowly after adopting
CI. To investigate the factors that are related to the time-to-delivery
of merged PRs, we train regression models that obtain sound me-
dian R-squares of 0.64-0.67. Finally, a deeper analysis of our models
indicates that, before the adoption of CI, the integration-load of the
development team, i.e., the number of submitted PRs competing
for being merged, is the most impactful metric on the time to de-
liver merged PRs before CI. Our models also reveal that PRs that
are merged more recently in a release cycle experience a slower
delivery time.

KEYWORDS
continuous integration; pull-based development; pull request; de-
livery time; delivery delay
ACM Reference Format:
João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza. 2018. Study-
ing the Impact of Adopting Continuous Integration on the Delivery Time of
Pull Requests. In MSR ’18: MSR ’18: 15th International Conference on Mining
Software Repositories , May 28–29, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/3196398.3196421

1 INTRODUCTION
The increasingly user demands for new functionalities and per-
formance improvements rapidly changes customer requirements
and turn software development into a competitive market [37]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196421

this scenario, software development teams need to deliver new
functionalities more quickly to customers to improve the time-to-
market [10, 23]. This faster delivery may lead customers to become
engaged in the project and to give valuable feedback. The failure
of providing new functionalities and bug-fixes, on the other hand,
may reduce the number of users and the project’s success.

The agile methodologies, such as Scrum [30] and Extreme Pro-
gramming (XP) [1], brought a series of practices with the allure of
providing a more flexible software development and a faster deliv-
ery of new software releases. The frequency of releases is one of
the factors that may lead a software project to success [3, 38]. The
release frequency may also indicate the vitality level of a software
project [7].

In order to improve the process of shipping new releases, i.e.,
in terms of software integration and packaging, Continuous Inte-
gration (CI) appears as an important practice that may quicken
the delivery of new functionalities [23]. In addition, CI may reduce
problems of code integration in a collaborative environment [33].

The CI practice has been widely adopted by the software com-
munity [11] in open source and industrial settings. It is especially
important for open source projects given their lack of requirement
documents and geographically distributed teams [33]. To the best of
our knowledge, no prior research empirically verified the impact of
CI on the time that is needed to deliver new software functionalities
to end-users.

Existing research has analyzed the usage of CI in open source
projects that are hosted inGitHub [19, 33, 34]. For instance, Vasilescu
et al. [34] investigated the productivity and quality outcomes of
projects that use CI in GitHub. They found that projects that use CI
merge pull requests (PRs) more quickly when they are submitted
by core developers. Also, core developers discover a significantly
larger amount of bugs when they use CI. According to Ståhl and
Bosch [32], CI may also improve the release frequency, which hints
that software functionalities may be delivered more quickly for
users. Additionally, Zhao et al. [40] studied the impact of CI on
development practices, such as code writing and submission, issue
and pull request closing, and testing practices. The authors observe
that practices such as “commit often” and “commit small” are indeed
employed after the adoption of CI. However, the growing trend of
closed issues slow down after the adoption of CI.

Nevertheless, little is known about whether CI quickens the
delivery of new merged PRs to end users. This is an important
investigation, since delays in releasing software functionalities can
be frustrating to end-users because they are most interested in
experiencing such new functionalities.

In this matter, our work empirically analyzes whether CI im-
proves the time-to-delivery of new Pull-Requests (PRs) that are

https://doi.org/10.1145/3196398.3196421
https://doi.org/10.1145/3196398.3196421

MSR ’18, May 28–29, 2018, Gothenburg, Sweden João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza

submitted to GitHub projects. GitHub provides an opportunity to
investigate the impact of CI on the time to deliver new PRs. GitHub
is considered themost popular version hostingworldwide [15], with
more than 14 million of registered users, a wide variety of projects
of different programming languages, sizes and characteristics. Our
study investigates the impact of adopting CI in 87 GitHub projects
that are implemented in 5 different programming languages.1 We
analyze a total of 162,653 PRs with 39,110 PRs before and 123,543
PRs after the adoption of CI. In particular, we address the following
research questions:
• RQ1: Aremerged pull requests releasedmore quickly us-
ing continuous integration? Interestingly, we find that the
time to deliver PRs is shorter after the adoption of CI in only
51.3% of the projects. In addition, we find that in 62 (62/87) of
the studied projects, the merge time of PRs is increased after
adopting CI.
• RQ2:Does the increased development activity after adopt-
ing CI increases the delivery time of pull requests? We
find that there exists a considerable increase in the number of
PR submissions and in the churn per releases after adopting
CI. The increased PR submissions and churn are key reasons
as to why projects deliver PRs more slowly after adopting
CI. 71.3% of the projects increase the rate of PR submissions
after adopting CI.
• RQ3:What factors impact the delivery time after adopt-
ing continuous integration? Our models indicates that,
before the adoption of CI, the integration-load of the devel-
opment team, i.e., the number of submitted PRs competing
for being merged, is the most impactful metric on the deliv-
ery time of PRs before CI. On the other hand, our models
reveal that after the adoption of CI, PRs that are recently
merged in a release cycle are likely to have a slower delivery
time.

Paper organization. The rest of this paper is organized as fol-
lows. In Section 2, we present the necessary background definitions
to the reader. In Section 3, we explain the design of our empirical
study. In Section 4, we present the results of our empirical study,
while we discuss its threats to the validity in Section 6. In Sec-
tion 7, we discuss the related work. Finally, we draw conclusions
in Section 8.

2 BACKGROUND & DEFINITIONS
The goal of our work is to investigate the impact of adopting CI on
the time that is needed to deliver merged PRs. In the following, we
outline the necessary background definitions to the reader.

2.1 The pull-based development model
There are two general ways that potential contributors can sub-
mit their contributions to a software project in a distributed code-
hosting environment (e.g., GitHub):

(i) shared repository. The core team shares the read and write
accesses to the central repository, enabling external contributors to
clone the repository, work locally and push their code contributions
back to the central repository.
1https://prdeliverydelay.GitHub.io/#studied-projects

Figure 1: An overview of the pull-based development model
that is integrated with Continuous Integration. The Step 4
is only performed when CI is used.

(ii) pull-based development. This paradigm is broadly used
by contributors of open source projects to develop software in a
distributed and collaborative way. The most popular code hosting
providers, e.g. GitHub and Bitbucket allow any user to fork and
clone any public repository and send PRs [14]. A PR is a mechanism
enabled by Git that allows contributors to work locally on the forked
repository and ask to have their contributions merged into the main
repository. The writing access is not mandatory to submit PRs.
Figure 1 shows an overview of the process to send contributions
using PRs. We explain each step of the process below:

Step 1. Fork a repository. The main repository of a project is
not shared to external contributors. Instead, contributors can clone
the main repository by forking it, so they can modify the code
without interfering in other repositories and with no need of being
a team member.

Step 2. Work locally the forked repository. The contributors
develop new functionalities, fix bugs or provide features and en-
hancements to the forked repository.

Step 3. Submit the local changes to themain repository.When
changes are ready to be submitted, contributors request a pull of
such changes to the main repository by sending a PR [39]. Such PR
specifies the local branch that has to be merged into a given branch
of the main repository.

Step 4. Verify whether the PR breaks the build. The CI service
automatically merge the PR into a test branch. Next, the CI service
builds the whole project and runs the test suite to verify whether
the PR breaks the codebase. Typically, if tests fail during the process
of CI, the PR is rejected and additional changes are required to the
external contributor to improve his/her PR [39]. In case that all
tests pass during the CI process, the integrators thoroughly review
the PR before deciding to accept the contributions. This decision
is based on the quality, technical design, and the priorities of the
submitted PRs [16].

Step 5. Accept or reject a PR. After the PR submission, an inte-
grator of the main repository must inspect the changes to decide
whether they are satisfactory. In case that the changes fulfill the re-
quirements of the project, the integrator pulls them to the specified

https://prdeliverydelay.GitHub.io/#studied-projects

Studying the Impact of Adopting Continuous Integration on the Delivery Time of Pull RequestsMSR ’18, May 28–29, 2018, Gothenburg, Sweden

branch of the main repository. Otherwise, the core team may re-
quest additional changes to the external contributor to make his/her
PR acceptable. In the pull-based development, the integrator plays
a crucial role by managing contributions [16].

2.2 Continuous Integration in a pull-based
development model

CI is a set of practices that lead developers to integrate their work
more frequently, i.e., at least daily [12, 25]. All code must be main-
tained in a single repository. When a contributor commits to the
repository, an automated system verifies whether the change breaks
the codebase (Step 4 of Figure 1) [25]. The entire process must be
automated. Ideally, a build should compile the code and include
a test suite to verify whether the codebase is broken after adding
new changes. In CI, the work of developers is continually compiled,
built, and tested [39].

CI is widely used on GitHub. According to Gousios et al. [16], 75%
of GitHub projects that makes a heavy use of PRs also tend to use CI.
Several CI services, such as Jenkins, TeamCity, Bamboo, CloudBees
and Travis-CI [25] are available for development teams. Jenkins and
Travis-CI are the most used by GitHub projects [34]. Travis-CI is a
CI platform for open source and private GitHub projects. Currently,
over 300k projects are using this tool.2

3 EMPIRICAL STUDY
In this section we explain how we select the studied projects and
construct the database that we use in our analyses.

3.1 Studied Projects
Our goal is to identify projects that have a long historical data and
that adopted CI at some point of their life. We use such projects to
better understand the impact of adopting CI on the delivery time
of merged PRs. We use a similar approach as used by Vasilescu et
al. [34] to select our projects. The selection process of our projects
is shown in Figure 3. We describe each step of this process in the
following.

First, we use the GitHub API to identify the 3,000 most popular
projects that are written in the five most popular programming
languages (Java, Python, Ruby, PHP and JavaScript) of GitHub.3, 4
The popularity of a project is measured by the number of stars that
are assigned to that project.5 We performed our search on GitHub
in November 11th, 2016.

Next, we checkwhether a project adopts a CI service. In our study,
we only consider projects that use Travi-CI. Similar to Vasilescu et
al. [34], we avoid projects that use Jenkins, since the entire CI
history of such projects is not available. We identify that a given
project use Travis-CI when there are builds that are associated with
the Travis-CI API. We use the date of the first Travis-CI build as
the moment at which a project started to adopt CI. Out of 3,000
projects, 1,784 (59,5%) have used Travis-CI.

In step 3, we use the GitHub API to gather the merged PRs of
each project. We group the PRs into the before- and after-CI buckets.

2https://travis-ci.org/
3https://developer.GitHub.com/v3
4https://GitHub.com/blog/2047-language-trends-on-GitHub
5https://help.GitHub.com/articles/about-stars/

Table 1: Summary of the number of projects and released
pull requests grouped by programming language.

Language Projects PRs total PRs after CI PRs before CI

JavaScript 33 57,104 39,548 17,556
Python 23 55,003 45,896 9,107
Java 11 7,700 4,267 3,433
Ruby 10 22,864 19,667 3,197
PHP 10 19,982 14,165 5,817
Total 87 162,653 123,543 39,110

Figure 2: An overview of our data collection process.

We exclude projects that have less than 100 merged PRs in the before
or the after buckets to maintain a considerable amount of data to
perform our analyses. 156 projects remains after step 3.

In step 3, we also use the GitHub API to fetch all PRs and their
metadata for the remaining projects. We then link the PRs to their
specific releases. Such links help us to calculate the total time be-
tween when a PR was merged and when that PR was released. We
refer to this time interval as to “delivery time”. Finally, we filter out
projects that have less than 100 linked PRs in the before or after
buckets. A total of 90 projects remains.

Finally, we removed “toy projects” and projects with no releases
before or after the adoption of CI. For example, students in soft-
ware engineering courses may use GitHub for versioning their
assignments. We refer to these cases as “toy projects" because their
content are trivial and not suitable to our research. Hence, we verify
the project name and it’s README.md file to avoid toy projects
in our analyses. Out of 90 projects, 87 remains after Step 4 (33
JavaScript, 23 Python, 11 Java, 10 Ruby and 10 PHP). 123,543 PRs
were delivered after the adoption of CI, while 39,110 were delivered
before the adoption of CI (a total of 162,653 PRs, see Table 1). This
unbalanced number of PRs between project phase are related to how
long projects have adopted CI. In average, our studied projects are
5.17 years old. The adoption of Travis-CI comprises 60% of the age
of our projects. Table 1 shows the number of PRs per programming
language before and after CI.

3.2 Data collection
After we select our studied projects, we fetch PR and release meta-
data for each project. The data collection process is shown in Fig-
ure 2. Each step of the process is detailed below.

Step 1. Collect pull request information.We use the GitHub
API to collect PRs and their respective meta-data. For each PR, we
select the following attributes: author (GitHub user), pull-number,
title, description, number of added and deleted lines (churn), number

https://travis-ci.org/
https://developer.GitHub.com/v3
https://GitHub.com/blog/2047-language-trends-on-GitHub
https://help.GitHub.com/articles/about-stars/

MSR ’18, May 28–29, 2018, Gothenburg, Sweden João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza

Figure 3: An overview of our project selection process.

of changed files, number of activities, number of comments, date of
comments, state (Open, Closed, Merged), creation date, close date,
and closedBy (GitHub user).

Step 2. Link pull requests to releases. After we collect the PR
information, we collect the release information of the studied PRs.
We collect the publish date, start date, the number of commits and
the number of PRs for each release of the studied projects. We also
manually verify whether the releases are user-intended, so that we
do not consider pre, beta, alpha, rc (release candidate) releases in
our analyses. Instead, in case that a PR was released in a non-user-
intended release, we link such a PR with the next user-intended
release. For example, if a project has the following release tags:
v1.0, v1.1.pre, v1.1 and v2.0, chronologically ordered and a PR is
released in v1.1.pre release, we move the publish date of this PR to
the next user-intended release (i.e., the date of release v.1.1). We
clone all repositories of our studied projects and fetch all of their
releases tags. We then compute a diff between these tags to verify
which commit logs were added in a given tag. Next, we parse our
obtained commit logs. For instance, if we find the pattern “Merge
pull request #<X>" (which is automatically generated by Git when
a PR is merged) between release tags v1.1 and v2.0, we consider that
such a commit log was released in v2.0. By using the pattern “Merge
pull request #<X>" we could link 84.1% (162,653/193,328) of the merged
PRs to its commits. The remaining 15% may still be waiting for a
release to be shipped or the integrator might have cherry picked
the commits of these PRs. In the latter case, the pattern “Merge
pull request #<X>" is not automatically recorded in the respective
commit logs. Finally, we link merged PRs to their releases based on
the tags that are associated to the commits.

Step 3 and 4. Compute metrics and perform analyses. We
use data from Steps 1 and 2 to compute the metrics that we use in
our analyses. The detailed information about all computed metrics
for each PR is described in Section 4. We calculate these metrics
because we suspect that they share a relationship with the delivery
time of merged PRs.

4 RESULTS
In this section we present the motivation, approach, and results for
each RQ.

RQ1 - Are merged pull requests released more
quickly using continuous integration?
Motivation. In recent years, many software companies have
adopted the CI practice in their development life cycle. This wide
adoption is related to the perceived benefits that are brought by

Figure 4: The basic life-cycle of a released pull request.

CI. For instance, the risk reduction, a higher confidence of the
development team regarding their software product [11], higher
productivity, higher release frequency and predictability [32], and
the allure of delivering new features more quickly [23]. However,
there is a lack of studies that empirically check the impact of CI on
the time-to-delivery of merged PRs. In RQ1, we study the delivery
time of merged PRs before and after the adoption of CI.

Approach. Figure 4 shows the basic life cycle of a released PR:
(t1) merge phase; and (t2) delivery phase. We refer to the t1 + t2
time as to the lifetime of a PR. In RQ1, we analyze the merge and
delivery phases. Themerge phase (t1) is the required time for PRs to
be merged into the codebase, whereas the delivery phase (t2) refers
to the required time for PRs to be released after they have been
merged, i.e., ready to be delivered to end-users.

We use Mann-Whitney-Wilcoxon (MWW) tests [35] followed
by Cliff’s delta effect-size measures [6]. The MWW test is a non-
parametric test whose null hypothesis is that two distributions
come from the same population (α = 0.05). Cliff’s delta is a non-
parametric effect-size metric to verify the magnitude of the dif-
ference between the values of two distributions. The higher the
Cliff’s delta value, the greater the difference between distributions.
A positive Cliff’s delta shows how larger are the values of the first
distribution, while a negative Cliff’s delta shows the opposite. We
use the thresholds provided by Romano et al. [28], i.e. delta < 0.147
(negligible), delta < 0.33 (small), delta < 0.474 (medium), and
delta >= 0.474 (large). We use such statistical tools to analyze the
entire life-cycle of a PR before and after CI. First, we analyze the
PR delivery time (t2). Then, we analyze the (t1) merge time. Finally,
we investigate PR lifetime (t1 + t2).

Results. Only 51.3% of the projects deliver merged PRs more
quickly after the adoption of CI. Out of our 87 projects, we ob-
serve that 82.7% (72/87) obtained significant p−values (i.e., p < 0.05)
when comparing the delivery time of merged PRs before and after
adopting CI. Surprisingly, we observe that only 51.3% (37/72) of these
projects deliver merged PRs more quickly after adopting CI. Our
analyses indicate that 82.7% (72/87) of the projects have a statistical
difference on the delivery time of merged PRs, but a small median
Cliff’s delta of 0.304.

In 73% (46/63) of the projects, PRs are merged faster before
adopting CI.A total of 72.4% (63/87) of the projects have a statistical
difference on the time to merge PRs with a median Cliff’s delta of
0.206 (small). With respect to such projects, we observe that 73%
(46/63) merge PRs more quickly before CI.

Surprisingly, in 54% of the projects, PRs have a longer life-
time after adopting CI. We observe that in 54% (47/87) of our
projects, PRs have a larger lifetime after adopting CI. 71.3% (62/87) of
these projects have a statistically significant difference (p-value <
0.05) and a non−neдliдible median delta between the distributions

Studying the Impact of Adopting Continuous Integration on the Delivery Time of Pull RequestsMSR ’18, May 28–29, 2018, Gothenburg, Sweden

of lifetime of PRs (delta >= 0.147). 37.1% (23/62) of such projects
obtained a large delta (median 0.604), while 22.6% (14/62) and 40.3%
(25/62) of the projects obtainedmedium and small deltas, respectively
(medians of 0.362 and 0.223). Regarding the projects that obtained
a p − value < 0.05, we observe that 51.6% (32/62) have a shorter
PR lifetime before adopting CI, while 48.4% (30/62) had a shorter PR
lifetime after adopting CI.
Surprisingly, only 51.3% of the projects deliver merged PRs more
quickly after adopting CI. In 54% (47/87) of the projects, PRs expe-
rience a longer lifetime after the adoption of CI. Finally, PRs are
merged faster before adopting CI in 71.3% (63/87) of the studied
projects.

RQ2 - Does the increased development activity
after adopting CI increase the delivery time of
pull requests?
Motivation. In RQ1, we find that only 51.3% of the projects deliver
merged PRs more quickly after adopting CI. Also, in 54% (47/87) of
the projects, PRs experience a longer lifetime after adopting CI.
These results contradict our assumption that merged PRs would
be delivered more quickly after the adoption of CI in the great
majority of our projects. Although the adoption of CI is motivated
by the increase of the release frequency and predictability [32],
our results suggest a different trend. Hence, we are inclined to
ask the following question: Why do 54% of our studied projects
have PRs that experience a longer lifetime after the adoption CI?
This investigation is important to better understand the impact of
adopting CI in software development.

Approach. Similar to RQ1, we use Mann-Whitney-Wilcoxon
tests [35] and Cliff’s deltas [6] to analyze the data. We also use
box plots [36] to visually summarize and perform comparisons. In
RQ2, we investigate whether the increase on the lifetime of PRs
after adopting CI is related to a significant increase in the PR sub-
mission, merge and delivery rates after adopting CI. We group
our dataset into two buckets: before and after the adoption of CI.
For each bucket, we count the number of PRs that are submitted,
merged and delivered per release. We perform three comparisons
in this RQ. First, we compare whether the PR submission, merge
and delivery rates per release significantly increase after adopting
CI. Next, we verify whether there is a statically difference in the
release frequency of the projects after adopting CI. A high increase
or decrease in the release frequency also may lead to an increase or
decrease in the PR delivery rate per release, once the release size
changes. In addition, we use the Pearson correlation test [2], which
tests whether the correlation between two variables is significant.
The Correlation Coefficient (CC) between two variables is comprised
between −1 and 1. A CC of −1 indicates a strong negative correla-
tion, i.e., every time x increases, y decreases. A CC of 0 indicates no
correlation between the two variables, while 1 indicates a strong
positive correlation, i.e., when x increases, y also increases.

Results. 71.3% (62/87) of the projects increase PR submissions
after adopting CI. Figure 5 shows the distributions of the number
of submitted, merged and delivered PRs per release for the stud-
ied projects. We observe that projects tend to submit a median of
42.6 PRs per release after adopting CI, while a median of 15.3 PRs
before adopting CI. A Wilcoxon signed rank test reveals that the

CI NO-CI

0
50

10
0

15
0

N
um

be
r

of
 p

ul
l r

eq
ue

st
s

pe
r

re
le

as
e

42.6

15.3

(a) Submitted PRs

CI NO-CI

0
5

0
1

0
0

1
5

0

27.9
10.4

(b) Merged PRs

CI NO-CI

0
5

0
1

0
0

1
5

0

31.7

9.2

(c) Delivered PRs

Figure 5: PR submission, merge, and delivery rates per re-
lease.

CI NO-CI

0
10

20
30

40
50

rel
ea

se
s/y

ea
r

10.15 12.03

Figure 6: Releases per year before and after CI.

increase in the number of PR submissions is statistically significant
(p −value = 0.0001547), with a Cliff’s delta of 0.332 (medium effect-
size).We also observe a significant increase in the number ofmerged
PRs per release after the adoption of CI (p − value = 7.897e − 05,
with amedium Cliff’s delta of 0.347). The number of merged PRs per
release increases from 10.4 (median) before CI to 27.9 after CI. Inter-
estingly, we also observe an increase in the sum of PR code churn
per release after adopting CI. We obtain a p − value = 0.002273
and a Cliff’s delta value of 0.27 (small). This significant increase
in the PR code churn per release might also explain the increased
lifetime of PRs after adopting CI. Since more code modifications
are performed in the PRs of the releases after CI, it may require a
longer time to review, merge and deliver such PRs.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza

CI NO-CI

0
20

40
60

80
10

0

of
 P

R
 c

on
tri

bu
to

rs
 /

re
le

as
e

11.2
4.4

Figure 7: # of PR contributors

Figure 8: PR contributors per release.

After adopting CI projects deliver 3.43 times more PRs per
release than before CI. When we turn to PR throughput per re-
lease, we find that the number of delivered PRs per release also
highly increases after the projects adopting CI, it increases from 9.2
before CI to 31.7 after CI (see Figure 5c). Furthermore, the increase
on the number of delivered PRs per release after CI is statistically
significant (p−value = 1.366e−05, with a Cliff’sŹdelta of 0.3819527,
which is considered medium).

We do not observe a significant difference of release fre-
quency after adopting CI. A great increase in the PRs submis-
sion may be related to an increase in the release frequency after
adopting CI. Figure 6 shows the distributions of the number of
releases per year before and after the adoption of CI for each of the
studied projects. In the median, projects tend to ship 12.03 releases
per year before CI, while it drops to 10.15 after CI. We obtain a
p −value = 0.146, which indicates that the release frequency per
year before and after CI are statistically insignificant. Our results
suggest that the high increase in the number of delivered PRs per
release after adopting CI is unlikely to be linked with an increase
in the number of releases frequency. We investigate whether the
increased number of delivered PRs is due to an increase in the
number of contributors after the adoption of CI.

We find that 75.9% (66/87) of the studied projects tend to in-
crease the number of PR contributors per release after adopt-
ing CI. Figure 8 shows the distributions of the number of contribu-
tors per release both before and after the adoption of CI. The number
of PR contributors per release increases from 4.4 (median) before
CI to 11.2 after CI. We observe that the number of PR contributors
is statistically significant (p −value = 2.525e − 06), with a Cliff’s
delta of 0.413, which is considered medium.

Despite the increase in both the number of delivered PRs per
release and in the number of PR contributors per release after the
projects adopting CI, we did not observe a statistically correlation
between these variables. Our results show that the number of deliv-
ered PRs per release and the number of PR contributors per release
have small positive coefficient correlation of 0.1906346. Further-
more, a Pearson correlation test reveals that this correlation is not
statistically significant (p − value = 0.07695). Our observations
suggest that the higher increase of delivered PRs after the adoption
of CI is not tightly related to the increase in the number of releases
or contributors. Such increase in the number of delivered PRs might

Figure 9: Overview of the process that we use to build our
explanatory models.

be due to the quicker feedback and automated tests that are pro-
vided by CI. A qualitative study with developers may shed more
light upon this matter. We further discuss this issue in Section 6.
After adopting CI, projects deliver 3.43 times more PRs per release
than before CI. The large increase on the PR submission, merge
and delivery rate after CI is a possible reason as to why projects
may deliver PRs more quickly before adopting CI.

RQ3 - What factors impact the delivery time
after adopting continuous integration?
Motivation. In RQ1 and RQ2, we study the impact of adopting CI
on the delivery time of merged PRs. We observe that in only 51.3%,
of the projects, PRs are delivered more quickly after the adoption
of CI. One possible reason for that, is the increase of PR submis-
sions after the adoption of CI. Nevertheless, it is also important
to understand what are the characteristics of the delivery time of
merged PRs before and after the adoption of CI. Such information
may help project managers to track and avoid a high delivery time.

Approach.We use multiple regression modeling (Ordinary Least
Squares) to describe the relationship between X (i.e., the set of ex-
planatory variables, e.g., churn, description length), and the response
variable Y , i.e., the delivery time of merged PRs in terms of days. In
addition, we control covariates that might influence the results. For
each project, we build two explanatory models, one using the PRs
data before CI, and another using PRs data after CI. Table 2 shows
the definition and rationale for each variable of our explanatory
models. We model our response variable Y as the time between
when a PR was merged and when that PR was released (i.e., delivery
time).

We follow the guidelines of Harrell Jr. [18] for fitting linear
models. Figure 9 shows an overview of the process that we use to
build our statistical models. In the first step, we estimate the budget
(degrees of freedom, or simply D.F.) that we can spend in our models.
Then, we account for similarity and correlation of our explanatory
variables by using the Spearman rank correlation test. This test
checks the metrics that are highly correlated with another one in
order to remove them before building our explanatory models. In
the second step, we assess the fit of our linear regression models
using the R2. The R2 corresponds the proportion of the variability
in Y that can be explained by usingX . In general, it is a challenge to
determine what is a good R2 value, since it depends on the nature
of the problem that is being investigated [20]. In this study, we
consider for our analyses, only the models that achieve R2 values
higher than 0.5. In other words, we ensure that at least 50% of the
variability of our data is explained by our models. We analyze 34

Studying the Impact of Adopting Continuous Integration on the Delivery Time of Pull RequestsMSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 2: Metrics that are used in our explanatory models.

Dimension Atributes Type Definition (d) | Rationale (r)

Resolver

Contributor Experience Numeric

d: The number of previously released PRs that were submitted by the contributor of a particular PR.
We consider the author of the PR to be its contributor.
r: The greater the experience and participation of a user within a specific open source project, the
greater his/her chance of having his/her PR reviewed and integrated into codebase of such project by
its core integrators [31].

Contributor Integration Numeric
d: The average in days of the previously released PRs that were submitted by a particular contributor.
r: If a particular contributor usually submit PRs that are merged and released quickly, his/her future PR
might be merged and released quickly as well [9].

Pull Request

Stack Trace Attached Boolean

d: We verify if the PR report has an stack trace attached in its description.
r: If the PR provide a bug fix, a stack trace attached may provide useful information regarding the
causes of the bug and the importance of the submitted code, which may quicken the merge of the PR
and its delivery in a release of the project [29].

Description Size Numeric
d: The number of characters in the body (description) of a PR.
r: PRs that are well described might be more easier to merge and release than PRs that are more difficult
to understand [9].

Project

Queue Rank Numeric

d: The number that represents the moment when a PR is merged compared to other merged PRs in the
release cycle. For example, in a queue that contains 100 PRs, the first merged PR has position 1, while
the last merged PR has position 100.
r: A PR with a high queue rank is a recently merged PR. A merged PR might be released faster/slower
depending of its queue position [9].

Merge Workload Numeric

d: The amount of PRs that were created and still waiting to be merged by a core integrator at the
moment at which a specific PR is submitted.
r: A PR might be released faster/slower depending of the amount of submitted PRs waiting to be merged.
The higher the amount of created PRs waiting to be analyzed and merged, the greater the workload of
the contributors to analyze these PRs, which may impact the delivery time of them.

Process

Number of
Impacted Files Numeric

d: The number of files linked to a PR submission.
r: The delivery time might be related to the high number of files of a PR, because more effort must be
spent to integrate it [21].

Churn Numeric
d: The number of added lines plus the number of deleted lines to a PR.
r: A higher churn suggests that a great amount of work might be required to verify and integrate the
code contribution sent by means of PR [21, 26].

Merge Time Numeric
d: Number of days between the submission and merge of a PR.
r: If a PR is merged quickly, it is more likely to be released faster.

Number of Activities Numeric
d: An activity is an entry in the PR’ history.
r: A high number of activities might indicate that much work was required to turn the PR acceptable,
which may impact the integration of such PR into a release [21].

Number of Comments Numeric
d: The number of comments of a PR.
r: A high number of comments might indicate the importance of a PR or the difficulty to understand it
[13], which may impact its delivery time [21].

Interval of Comments Numeric

d: The sum of the time intervals (days) between comments divided by the total number of comments of
a PR.
r: A short interval of comments indicates the discussion was held with priority, which suggest that the
PR is important, thus, the PR might be delivered faster [9].

Commits per PR Numeric

d: Number of commits per PR.
r: The higher the number of commits in a PR, the greater the amount of contribution to be analyzed by
the project integrators, which might impact the delivery time of the PR.

models in total — 18 using PRs data before CI, and 16 using data
after CI. While R2 gives an indication of how much variability
may be explained by our models, this metric may also be very
dependent of the specific data to which our models were fitted, i.e.,
overfitted [24]. Therefore, in the next step, we assess how stable are
our models by computing the optimism-reduced R2. The optimism
of the R2 is computed as follows: (i) we count the DF that are spent
to fit the original model, then we select a bootstrap sample to fit
another model with the same DF of the original model; (ii) we
compute the R2 of both models that were fitted for the bootstrap
and the original samples. The optimism is the difference of the R2
statistics of the original and bootstrap samples. In our analyses, we
fit models for 1,000 bootstrap samples and the average optimism
is computed. The R2 optimism-reduced is calculated by subtracting
the average optimism from the initial R2 estimate. Finally, we use

the Wald X 2 maximum likelihood test to evaluate the impact that
each explanatory variable has on the models that we fit. The larger
the X 2 value for a variable, the larger the impact of such a variable
on the models to explain the variance of the response variable [9].
Then, we analyze the relationship that the most impactful variables
share with the response variable (delivery time). To do this, we use
the Predict function of the rms package of the R language to plot the
change in the delivery time against the change in each impactful
variable while holding the other variables constant at their median
values.

Results. Our models achieve a median R2 of 0.64 using pull
request data before CI, while achieving 0.67 after CI.Moreover,
themedian bootstrap-calculated optimism is less than 0.069 for both

MSR ’18, May 28–29, 2018, Gothenburg, Sweden João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza
0

20
40

60
80

10
0

%
 o

f e
xp

la
na

to
ry

 p
ow

er
co

mmits
 pe

r p
r

ch
an

ge
d fi

les
ch

urn
co

mmen
ts

co
mmen

ts
int

erv
al

merg
e w

ork
loa

d
qu

eu
e r

an
k

de
sc

rip
tio

n l
en

gth

co
ntr

ibu
tor

 ex
pe

rie
nc

e

co
ntr

ibu
tor

 in
teg

rat
ion

sta
ck

tra
ce

 at
tac

he
d

ac
tiv

itie
s

merg
e t

im
e

(a) Explanatory power of variables before adopting CI.

0
20

40
60

80
10

0

%
 o

f e
xp

la
na

to
ry

 p
ow

er
co

mmits
 pe

r p
r

ch
an

ge
d fi

les
ch

urn
co

mmen
ts

co
mmen

ts
int

erv
al

merg
e w

ork
loa

d
qu

eu
e r

an
k

de
sc

rip
tio

n l
en

gth

co
ntr

ibu
tor

 ex
pe

rie
nc

e

co
ntr

ibu
tor

 in
teg

rat
ion

sta
ck

tra
ce

 at
tac

he
d

ac
tiv

itie
s

merg
e t

im
e

(b) Explanatory power of variables after adopting CI.

Figure 10: Distributions of the explanatory power of each variable of our models.

00 00 00 00 00 00 0

1

4

2

00

1

0

9

3

4

10

00
0.0

2.5

5.0

7.5

10.0

activ
itie

s

changed file
s

churn

comments

comments i
nterva

l

commits
per p

r

contrib
utor e

xperience

contrib
utor in

tegration

descr
iption length

merge tim
e

merge worklo
ad

queue ra
nk

sta
ckt

race attached

N
um

be
r o

f m
od

el
s

CI
NO CI

Figure 11: The number of models per most influential vari-
ables.

set ofR2 of our set of models.6 These results suggest that our models
are stable enough to perform the statistical inferences that follow.

The “merge workload” is the most influential attribute in
themodels that we fit for data before the adoption of CI.Merge
workload represents the number of PRs competing to be merged
(see Table 2). Figure 10 shows the distributions of the explanatory
power of each variable of our models. The higher the median of the
explanatory power for a variable, the higher the influence that such
a variable has on the delivery time of PRs. We observe that merge
workload has the largest influence on our models to explain delivery
6https://prdeliverydelay.GitHub.io/#rq3-r-squared-and-optimism

time be f ore the adoption of CI. Our models reveal that the higher
the merge workload of the project, the higher the delivery time
of their PRs. Figure 11 shows each explanatory variable and the
number of models for which these variables are the most influential.
Indeed, merge workload is the most influential variable in (9/18)
of models that we fit using data before CI. Figure 12 shows the
relationship that the most influential variables of our models share
with delivery time. The relationship between merge workload and
delivery time is shown in Figure 12a. We choose 3 out of the 34
models with the higher R2 to plot the relationships. Nevertheless,
the rest of our models produce the same trend.7

The “queue rank” variable is the most influential variable
in ourmodels using data after the adoption of CI.Queue rank is
the moment when a PR is merged with respect to other merged PRs
in the release cycle. Figure 12b shows the relationship that queue
rank shares with delivery time. Our models reveal that merged PRs
have a lower delivery time when they are merged more recently
in the release cycle. In addition, contributor integration is the third
most influential variable in our models for both data before and after
the adoption of CI. Contributor integration represents the average
in days of the previously delivered PRs that were submitted by a
particular contributor. Our models also reveal that if a contributor
has his/her prior submitted PRs delivered quickly, his/her next
submitted PRs tend to be delivered more quickly (Figure 12c).

Our models suggest that “merge workload” is the most influential
variable to model the delivery time of merged PRs, before the adop-
tion of CI. Additionally, our models show that, after CI, merged PRs
have a lower delivery time when they are merged more recently
in the release cycle.

7https://prdeliverydelay.GitHub.io/#rq3-variables-explanatory-power

https://prdeliverydelay.GitHub.io/#rq3-r-squared-and-optimism
https://prdeliverydelay.GitHub.io/#rq3-variables-explanatory-power

Studying the Impact of Adopting Continuous Integration on the Delivery Time of Pull RequestsMSR ’18, May 28–29, 2018, Gothenburg, Sweden

0

2500

5000

7500

10000

0 500 1000 1500
merge workload

de
liv

er
y

tim
e

bcit-ci/CodeIgniter

(a)

-4000

-2000

0

0 1000 2000 3000 4000 5000
queue rank

de
liv

er
y

tim
e

aframevr/aframe

(b)

0

250

500

750

1000

1250

0 500 1000 1500 2000
contributor integration

de
liv

er
y

tim
e

HabitRPG/habitica

(c)

Figure 12: The relationship between the most influential
variables and delivery time.

5 DISCUSSION
In this section, we outline the implications of our quantitative obser-
vations for both research and practice in the software engineering
field.

Continuous integration is not a silver bullet. Through our
quantitative analyses, we observe that continuous integration does
not always reduce the time for delivering merged PRs (i.e., new soft-
ware functionalities) to end users. In fact, by analyzing 87 projects,
we observe that only 51% of the projects deliver merged PRs more
quickly after adopting CI (Section 4 - RQ1). If the decision to adopt
CI is mostly driven by the allure of quickening the delivery of
merged PRS [23], such a decision must be more carefully consid-
ered by development teams. Finally, previous research suggest that
the adoption of CI increases the release frequency of a software
project [19]. However, we did not observe such an increase in our
quantitative analyses (Section 4 - RQ2).

Does CI stimulate more contributions? We observe that the
adoption of CI is associated with a higher number of contributors,
PR submissions, and a higher sum of PR churn per release (Section
4 - RQ2). Future research should be invested to better understand
whether the adoption of CI leads projects to receiving more con-
tributions when compared projects that did not adopt CI in their
life-cycles.

There exists hope for later merged PRs. We observed that, af-
ter the adoption of CI, our studied projects tend to deliver the last
merged PRs more quickly (Section 4 - RQ3). Hence, contributors
should not be discouraged to wok on advancing their PRs inte-
gration (e.g., engaging code reviewers) despite the late stage of a
release cycle. Finally, we observe that contributors whose previous
submitted PRs were merged and delivered quickly, are also likely
to have their future PRs delivered quickly. Hence, we recommend

that the first PR submissions of a new contributor should be care-
fully crafted in order to maintain a successful track record in their
projects (so that their future PRs are delivered more quickly).

6 THREATS TO THE VALIDITY
In this section, we discuss the threats to the validity of our study.

Construct Validity. The construct threats to validity are con-
cerned with errors caused by the methods that we use to collect
our data. We use the GitHub API to develop tools to collect our
data. We also develop tools to link PRs to their respective releases.
Bugs in these tools may influence our results. However, we use
subsamples of the studied projects to carefully assess our tools’
outcomes, which produced consistent results.

Internal Validity. Internal threats are concerned with the abil-
ity to draw conclusions from the relationship between the depen-
dent variable (the delivery time of merged PRs) and independent
variables (e.g., release commits and queue rank).

The method that we use to link PRs to releases may not match
the actual number of delivered PRs per release. For instance, if a
version control system of a project have the following release tags
v1.0, v2.0, no-ver and v3.0, we remove the no-ver tag. If there are
PRs associated with the no-ver release, such PRs will be associated
to the release v3.0. However, only 5.36% (403/7519) of our studied
releases are included in this case.

With respect to our explanatory models, the predictors that we
use in our models are not exhaustive. Although our models achieve
sound R2 values, other variables may be used to improve perfor-
mance (e.g., a boolean indicating whether a PR is associated with
an issue report and another boolean that verifies whether a PR was
submitted by a core developer or an external contributor). Never-
theless, our set of predictors should be approached as a preliminary
set that can be easily computed rather than a final solution.

External Validity. External threats are concerned with the ex-
tent to which we can generalize our results [27]. In this work we
analyzed 162,653 PRs of 87 popular open source projects from
GitHub. All projects adopt the most popular CI server on GitHub,
i.e., Travis-CI. We recognize that we cannot generalize our results
to any other projects with similar or different settings (e.g., private
software projects). Nevertheless, in order to achieve more generaliz-
able results, replication of our study in different settings is required.
For replication purposes, we publicize our datasets and results to
the interested researcher.8

7 RELATEDWORK
In this section, we situate our study with respect to prior work that
analyze the impact of adopting CI in open source projects.

Despite the wide adoption of Agile Release Engineering (ARE)
practices (i.e., continuous integration, rapid releases, continuous
delivery and continuous deployment), there is still a lack of empiri-
cal studies that investigate the impact that these practices have on
the software development activities, i.e., in terms of productivity
and quality. Through a systematic literature review, Karvonen et al.
[22] analyzed 619 papers and selected 71 primary studies that are
related to ARE practices. They found that only 8 out of the 71 pri-
mary studies empirically investigate CI. Karnoven et al. highlights
8https://prdeliverydelay.GitHub.io/#datasets

https://prdeliverydelay.GitHub.io/#datasets

MSR ’18, May 28–29, 2018, Gothenburg, Sweden João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza

that empirical research in this field is highly necessary to better
understand the impact of adopting CI on software development.

Hilton et al. [19] analyzed 34,544 open source projects from
GitHub and surveyed 442 developers. The authors found that 70%
of the most popular GitHub projects use CI. The authors found that
CI helps projects to release more oftenly and that the CI build status
may lead to a faster integration of PRs. Differently for Hilton et al.,
we quantitatively observe that CI do not lead to an increase in the
release frequency. Instead, more PRs are integrated into releases
after the adoption of CI.

Vasilescu et al. [33] studied the usage of Travis-CI in a sample of
223 GitHub projects written in Ruby, Python and Java. They found
that the majority of projects (92.3%) are configured to use Travis-CI,
but less than half actually use it. In a follow up research, Vasilescu
et al. [34] investigated the productivity and quality of 246 GitHub
projects that use CI. They found that projects that use CI merge PRs
more quickly when they are submitted by core developers. Also,
core developers find significantly more bugs when using CI. We
use a similar approach as used by Vasilescu et al. [34] to identify
projects that use Travis-CI. We also analyze the merge time of PRs
and find that the majority of the studied projects merge PRs more
quickly before CI. In addition, we also observe that the number of
merged PRs per release is higher after adopting CI for most of the
projects.

Regarding the acceptance and latency of PRs in CI, Yu et al. [39]
used regression models in a sample of 40 GitHub projects that use
Travis-CI. The authors found that the likelihood of rejection of a
PR increase by 89,6% when the PR breaks the build. The results
also show that the more succinct a PR is, the greater the probability
that such a PR is reviewed and merged earlier. We complement the
prior work by analyzing the most influential factors that impact
the delivery time of merged PRs before and after the adoption of CI.

Zhao et al [40] conducted an empirical study to investigate the
transition to Travis-CI in a large sample of GitHub open-source
projects. They quantitatively compared the CI transition in these
projects using metrics such as commit frequency, code churn, pull
request closing, and issue closing. In addition, they conducted a
survey with a sample of developers of those projects. They used
a set of three questions related to the adoption of Travis and CI.
They also asked how their development process was adapted to
accommodate the transition to CI. The main results of their study
are: (i) a small increase in the number of merged commits after CI
adoption; (ii) a statistically significant decreasing in the number of
merge commit churn; (iii) a moderate increase in the number of
issues closed after CI adoption; and (iv) a stationary behavior in
the number of closed pull requests as well as a longer time to close
PRs after the CI Adoption. As opposed to Zhao et al [40], our study
focuses on the analysis of delivered pull requests. We find that for
54% of projects, the submitted PRs experience a longer lifetime
after the adoption of Travis-CI. Moreover, we observe that PRs are
delivered 3.43 times more per release after the adoption of CI.

Other work has studied the delivery time of new features, en-
hancements, and bug fixes [4, 5, 8, 9]. Costa et al. [9] investigated
the impact of switching from traditional releases to rapid releases
on the delivery time of fixed issues of the Firefox project. They used
predictive models to discover which factors significantly impact
the delivery time of issues in each release strategy. Differently from

prior work, our study focuses on the impact of adopting CI on the
time-to-delivery of merged PRs.

8 CONCLUSION
We perform an empirical study that investigates the impact of
adopting CI on the time-to-delivery of merged PRs. We use 162,653
PRs of 87 GitHub projects to explore the factors that affect (and
improve) the time to deliver PRs. In this study, we observe the
following:

• In 54% (47/87) of the projects, submitted pull requests experi-
ence a longer lifetime after the adoption of continuous inte-
gration. Furthermore, PRs are merged faster before adopting
CI in 71.3% (63/87) of the studied projects.
• One possible reason for the faster delivery of PRs before CI, is
the considerable increase on the number of PR submissions
and the release churn after the adoption of CI. 71.3% (62/87) of
the projects that adopt CI increase the rate of PR submissions.
• The main factor that affect the time-to-delivery of merged
PRs before the adoption of CI is the merge workload, which
represents the number of submitted PRs competing for being
merged. The models also show that queue rank (i.e., the time
at which a PR is merged during a release cycle) also have
the strongest impact on the time to deliver merged PRs after
the adoption of CI.

Open source projects that plan adopt CI should be aware that
the adoption of CI will not necessarily deliver merged PRs more
quickly. On the other hand, as the pull-based development can
attract the interest of external contributors, and hence, increase the
projects workload, CI may help in other aspects, e.g., delivering
more functionalities to end users (see RQ2).

Our work is the first to explore the impact of CI on the time-
to-delivery of PRs in software development. However, more work
is necessary to better understand and improve the activities of
integrating and delivering PRs. Further research on the field can
investigate additional projects, programming languages, and build
tools, in order to help developers and project managers to be aware
of the estimated time-to-delivery of new PRs based on their charac-
teristics. Finally, replications of this study in different settings (e.g.
private initiative) is necessary.

ACKNOWLEDGMENTS
We would like to thank Dr. Ahmed E. Hassan, from Queen’s Uni-
versity, Canada and Dr. Shane McIntosh, from McGill University,
Canada for their valuable feedback in the final stages of this work.
Additionally, this work is partially supported by the National Insti-
tute of Science and Technology for Software Engineering (INES),
CNPq grant 465614/2014-0, and National Council for Scientific
and Technological Development, CNPq grants 459717/2014-6 and
312044/2015-1.

REFERENCES
[1] Kent Beck. 2000. Extreme Programming Explained: Embrace Change. Addison-

Wesley Professional.
[2] DJ Best and DE Roberts. 1975. Algorithm AS 89: the upper tail probabilities of

Spearman’s rho. Journal of the Royal Statistical Society. Series C (Applied Statistics)
24, 3 (1975), 377–379.

Studying the Impact of Adopting Continuous Integration on the Delivery Time of Pull RequestsMSR ’18, May 28–29, 2018, Gothenburg, Sweden

[3] Jiyao Chen, Richard R Reilly, and Gary S Lynn. 2005. The impacts of speed-to-
market on new product success: the moderating effects of uncertainty. IEEE
Trans. Eng. Manage. 52, 2 (2005), 199–212.

[4] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2015.
Predicting Delays in Software Projects Using Networked Classification (T). In Au-
tomated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference
on. IEEE, 353–364.

[5] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2017.
Predicting the delay of issues with due dates in software projects. Empirical
Software Engineering Journal (2017), 1–41.

[6] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114, 3 (1993), 494.

[7] Kevin Crowston, Hala Annabi, and James Howison. 2003. Defining open source
software project success. ICIS 2003 Proceedings (2003), 28.

[8] Daniel Alencar da Costa, Surafel Lemma Abebe, Shane McIntosh, Uirá Kulesza,
and Ahmed E Hassan. 2014. An empirical study of delays in the integration
of addressed issues. In Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on. IEEE, 281–290.

[9] Daniel Alencar da Costa, Shane McIntosh, Uirá Kulesza, and Ahmed E. Hassan.
2016. The Impact of Switching to a Rapid Release Cycle on the Integration
Delay of Addressed Issues: An Empirical Study of the Mozilla Firefox Project. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR ’16). ACM, New York, NY, USA, 374–385.

[10] Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. 2014. Chal-
lenges when adopting continuous integration: A case study. In International
Conference on Product-Focused Software Process Improvement. Springer, 17–32.

[11] Paul Duvall, StephenMMatyas, and Andrew Glover. 2007. Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley Signature
Series). Addison-Wesley Professional.

[12] Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-
Works) http://www. thoughtworks. com/Continuous Integration. pdf (2006), 122.

[13] Emanuel Giger, Martin Pinzger, and Harald Gall. 2010. Predicting the fix time
of bugs. In Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering. ACM, 52–56.

[14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. 345–355.

[15] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from
a firehose. In Mining software repositories (msr), 2012 9th ieee working conference
on. 12–21.

[16] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integra-
tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. 358–368.

[17] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integra-
tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 358–368.

[18] Frank Harrell. 2015. Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Springer.

[19] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering - ASE 2016.

[20] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2014. An
Introduction to Statistical Learning: With Applications in R. Springer Publishing
Company, Incorporated.

[21] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch make
it? and how fast? case study on the linux kernel. In Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on. IEEE, 101–110.

[22] Teemu Karvonen, Woubshet Behutiye, Markku Oivo, and Pasi Kuvaja. 2017.
Systematic literature review on the impacts of agile release engineering practices.
Information and Software Technology 86 (2017), 87 – 100.

[23] Eero Laukkanen, Maria Paasivaara, and Teemu Arvonen. 2015. Stakeholder Per-
ceptions of the Adoption of Continuous Integration – ACase Study. In Proceedings
of the 2015 Agile Conference (AGILE ’15). IEEE Computer Society, 11–20.

[24] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016. An
Empirical Study of the Impact of Modern Code Review Practices on Software
Quality. Empirical Softw. Engg. 21, 5 (2016), 2146–2189.

[25] Mathias Meyer. 2014. Continuous integration and its tools. IEEE Softw. 31, 3
(2014), 14–16.

[26] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-
sures to predict system defect density. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on. IEEE, 284–292.

[27] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. 2000. Empirical
Studies of Software Engineering: A Roadmap. In Proceedings of the Conference on
The Future of Software Engineering (ICSE ’00). ACM, 345–355.

[28] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek. 2006. Appropriate
statistics for ordinal level data: Should we really be using t-test and Cohen’sd for
evaluating group differences on the NSSE and other surveys?. In annual meeting
of the Florida Association of Institutional Research. 1–3.

[29] Adrian Schroter, Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. 2010.
Do stack traces help developers fix bugs?. In Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 118–121.

[30] Ken Schwaber. 1997. SCRUM Development Process. In Business Object Design
and Implementation, Dr Jeff Sutherland, Cory Casanave, Joaquin Miller, Dr Philip
Patel, and Glenn Hollowell (Eds.). Springer London, 117–134.

[31] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao Ohira,
Bram Adams, Ahmed E Hassan, and Ken-ichi Matsumoto. 2010. Predicting re-
opened bugs: A case study on the eclipse project. In Reverse Engineering (WCRE),
2010 17th Working Conference on. IEEE, 249–258.

[32] Daniel Ståhl and Jan Bosch. 2014. Modeling Continuous Integration Practice
Differences in Industry Software Development. J. Syst. Softw. 87 (2014), 48–59.

[33] Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik,
and Mark GJ van den Brand. 2014. Continuous integration in a social-coding
world: Empirical evidence from GitHub. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. IEEE, 401–405.

[34] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2015.

[35] Daniel S Wilks. 2011. Statistical methods in the atmospheric sciences. Vol. 100.
Academic press.

[36] David F. Williamson, Robert A. Parker, and Juliette S. Kendrick. 1989. The box
plot: A simple visual method to interpret data. Annals of Internal Medicine 110
(1989), 916–921.

[37] Krzysztof Wnuk, Tony Gorschek, and Showayb Zahda. 2013. Obsolete software
requirements. Information and Software Technology 55, 6 (2013), 921–940.

[38] Claes Wohlin, Min Xie, and Magnus Ahlgren. 1995. Reducing time to market
through optimization with respect to soft factors. In The Engineering Management
Conference. 116–121.

[39] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang. 2016. Determi-
nants of pull-based development in the context of continuous integration. Sci.
China Inf. Sci. 59, 8 (2016).

[40] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: a large-scale empirical study. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 60–71.

	Abstract
	1 Introduction
	2 Background & Definitions
	2.1 The pull-based development model
	2.2 Continuous Integration in a pull-based development model

	3 Empirical Study
	3.1 Studied Projects
	3.2 Data collection

	4 Results
	5 Discussion
	6 Threats to the validity
	7 Related work
	8 Conclusion
	Acknowledgments
	References

