Empirical Software Engineering manuscript No.
(will be inserted by the editor)

An Empirical Study on the Issue Reports with Questions
Raised during the Issue Resolving Process

Yonghui Huang - Daniel Alencar da Costa -
Feng Zhang - Ying Zou

Author pre-print copy. The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10664-018-9636-3

Abstract An issue report describes a bug or a feature request for a software system.
When resolving an issue report, developers may discuss with other developers and/or
the reporter to clarify and resolve the reported issue. During this process, questions
can be raised by developers in issue reports. Having unnecessary questions raised
may impair the efficiency to resolve the reported issues, since developers may have to
wait a considerable amount of time before receiving the answers to their questions.
In this paper, we perform an empirical study on the questions raised in the issue
resolution process to understand the further delay caused by these questions. Our
goal is to gain insights on the factors that may trigger questions in issue reports. We
build prediction models to capture such issue reports when they are submitted. Our
results indicate that it is feasible to give developers an early warning as to whether
questions will be raised in an issue report at the issue report filling time. We examine
the raised questions in 154,493 issue reports of three large-scale systems (i.e., Linux,
Firefox and Eclipse). First, we explore the topics of the raised questions. Then, we
investigate four characteristics of issue reports with raised questions: (i) resolving
time, (ii) number of developers, (iii) comments, and (iv) reassignments. Finally, we
build a prediction model to predict if questions are likely to be raised by a developer
in an issue report. We apply the random forest, logistic regression and Naive Bayes
models to predict the possibility of raising questions in issue reports. Our prediction
models obtain an Area Under Curve (AUC) value of 0.78, 0.65, and 0.70 in the Linux,
Firefox, and Eclipse systems, respectively. The most important variables according to

Y. Huang, D.A. da Costa and Y. Zou

Department of Electrical and Computer Engineering, Queen’s University,
Kingston, Ontario, Canada

E-mail: {ckeys.huang, daniel.alencar, ying.zou} @cs.queensu.ca

F. Zhang
School of Computing, Queen’s University, Kingston, Ontario, Canada
E-mail: {feng}@cs.queensu.ca

http://dx.doi.org/10.1007/s10664-018-9636-3

2 Yonghui Huang et al.

our prediction models are the number of Carbon Copies (CC), the issue severity and
priority, and the reputation of the issue reporter.

Keywords issue reports; questions; bug fixing; empirical study

1 Introduction

The delay in resolving issues can affect the satisfaction of users (Breu et al.| [2009).
Investigating the factors that impact the efficiency of the issue resolving process has
attracted both academia and industry (Baysal et al.| [2009; |da Costa et al.| [2017alb;
Francalanci and Merlo| 2008}/ Ghapanchi and Auruml, 201 1;Nguyen et al.,2012;|Ohira
et al.,|2012). An important factor that affects the efficiency of resolving process is the
interaction among developers and reporters to discuss how to address a reported issue
during the issue resolving process. Breu et al. (Breu et al.,2010) observe that the active
participation of both reporters and developers in the discussion of an issue reports
may increase the efficiency of resolving issues. When resolving issues, developers
might raise questions in order to clarify the described issue (Breu et al.|[2010; Ko and
Chilana, 201 1}; [Lotufo et al.,|2012) or the requested feature (Ko and Chilana, 2011)).
As a consequence, we are interested in performing a more detailed empirical study on
a larger scale of issue reports. Our goal is to gain insights about the impact of raised
questions in issue reports on the issue resolution process.

Much research has been devoted to study the discussion between developers and
reporters in issue reports. A preliminary study by Breu et al. (Breu et al.l [2009)
analyzes 600 issue reports to study how the raised questions in issue reports are
answered. Sillito et al. (Sillito et al., 2006) investigate what information developers
generally need in issue reports and how developers usually obtain such information.
Likewise, Bettenburg et al. (Bettenburg et al.l |2008a) surveyed 466 developers and
reporters to understand the characteristics of a well-written issue report. The authors
also propose CUEZILLA, a recommender tool that indicates how issue reports can
be improved.

Despite the great advance of prior research in studying the discussion in issue
reports and the characteristics of well-written reports, the characteristics of issue
reports with raised questions remain unexplored. For example, even though an issue
report is well-written, developers may still ask input from other team members to better
understand the issue report. A high number of raised questions might also indicate
that the solution to an issue report is not trivial (e.g., a high severity report), so that
the developers have to carefully reach consensus before committing the final solution.
In this paper, we conduct an in-depth analysis about the issue reports with raised
questions. We aspire to provide earlier warnings (i.e., at the issue report filling time)
to developers and users regarding issue reports that will likely receive questions, so
they can provide the missing information while it is still fresh in their minds. Although
not all questions may be avoided, warning that an issue report is more likely to receive
questions may also lead users and developers to be more alert and respond to the
questions more quickly.

To understand the most influential factors that can trigger questions in issue reports,
we investigate 519,645 issue reports of three well known and long-lived systems (i.e.,

Title Suppressed Due to Excessive Length 3

Linux, Firefox, and Eclipse). We observe that there is a considerable proportion
(24.87% to 47.04%) of issue reports with raised questions that were reported for
these three systems. Dealing with the raised questions in such a large amount of issue
reports does have a serious threat to the efficiency of the issue resolving process.
Hence, we are interested in understanding what questions are raised and how such
raised questions impact the issue resolving process.

First, we investigate what types of questions are asked in order to understand the
reasons behind such questions and the information sought by developers when asking
them. Next, we investigate the impact that raising questions has on the issue resolving
process. Finally, we study the feasibility of predicting whether questions will likely
be raised in a given issue report at the time that a report is created. In particular, we
address the following three research questions:

RQ1: What type of questions are asked by developers? To extract the topics
of questions that developers raised on issue reports, we apply the Latent Dirichlet
Allocation (LDA) technique on the extracted questions from issue reports. Among the
three subject systems (Linux, Firefox, and Eclipse), there are four common categories
of questions “Current status”, “Reproduce steps”, “Final resolution” and “Operating
system”. The majority of questions are different across the three subject systems, as
the type of questions heavily depends on the characteristics of issues belonging to each
system. In particular, Linux developers ask more questions regarding “Configuration”
and “Driver”; Firefox developers raise more questions related to “Safe mode” and
“Reproduce steps”; and Eclipse developers ask more questions about Component.
Although our findings only highlight the types of questions in the three systems, our
approach can be applied to other systems for developers to tailor a particular checklist
for their issue reports.

RQ2: Are issue reports with raised questions different from issue reports without
raised questions?

It is intuitive to think that questions raised in issue reports will delay the resolution
of such reports. However, it is important to empirically investigate whether issue re-
ports with raised questions take a considerable extra time to be resolved. For example,
although an issue report with raised questions can be more time consuming, the extra
time that is needed could be of a small significance on the average population of issue
reports.

We use statistical tests and measures of effect-size to evaluate the difference
between issue reports with raised questions and without raised questions through four
perspectives: (i) the time elapsed of the entire resolving process (i.e., from when the
issue reports is “touched’{T| by developers for the first time to when it gets resolved);
(ii) the number of developers involved in the resolving process; (iii) the number of
comments; and (iv) the number of reassignments.

Our results show that issue reports containing questions have a longer elapsed time
and involve more developers. In addition, although Bhattacharya and Neamtiu (Bhat-
tacharya and Neamtiul [2011) found that reassignments are not always correlated with
issue resolution time, we observe that issues with raised questions are more likely to

I “Touched” refers to the activity of developers on an issue report, which could be either posting a
comment on the issue report or changing any field of the issue report.

4 Yonghui Huang et al.

be reassigned to other developers. Our results suggest that issue reports containing
questions are significantly different from issue reports without questions (in terms of
(1), (ii), (iii), and (iv)).

RQ3: Is the occurrence of questions predictable?

We collect the metrics that are available at the creation time of an issue report,
and experiment them with three modeling techniques (i.e., random forest, logistic
regression and Naive Bayes) to predict whether developers will raise questions on
issue reports. We find that the model built with the random forest performs the
best. The random forest model achieves an AUC value of 0.78 in the Linux system,
0.65 in the Firefox system, and 0.70 in the Eclipse system. It is feasible to predict the
occurrence questions in the issue reports of Linux, or even Eclipse. The prediction can
give developers an instant warning on newly created issue reports, so that developers
and issue reporters can clarify the possible missing information while the issue is still
fresh in the mind of the issue reporter.

Our main contributions are summarized as follows:

— We perform an in-depth analysis on the raised questions from the issue reports,
such as what are questions raised, and how the raised questions impact the issue
tracking process.

— We demonstrate the feasibility of building a model to predict the likelihood of
questions raised in issue reports when such issue reports are submitted.

Paper organization. We provide a motivating example to our study in Section [2| We
describe our data processing steps in Section [3] The experiment setup and results of
RQI, RQ2, and RQ3 are presented and discussed in Sections [} [5|and[6] respectively.
Threats to validity are outlined in Section[7] We discuss the related work in Section|[8]
and conclude the paper in Section[9]

2 Motivation Example

Little quantitative analyses have been conducted to investigate the impact of raised
questions in the issue resolution process. A preliminary investigation of our data
reveals that questions raised in issue reports might be indicative of delays in the issue
resolution process.

[Fig[T]shows an example of questions raised in the Linux-537report. The Linux-53
report describes a problem about consistent I/O errors in the Linux kernel regarding
the CDROM drive. The issue report then received comments from other users stating
that the same problem was experienced in other Linux kernel versions.

In Comment-7, a developer (Diego) asks how to reproduce the issue. Diego
mentions that he cannot reproduce the issue anymore, which is why he asks if there is
an explicit way to reproduce the reported issue. Next, In Comment-8 (two years later),
another developer asks whether anyone is still observing the issue. In Comment-9,
after two months, another user (Seth) deciphered how to reproduce the issue, under
a particular configuration, hardware, and software environment. Seth also provided
a work-around to avoid the problem by disabling the Direct Memory Access (DMA)

2 https://bugzilla.kernel.org/show_bug.cgi?id=53

Title Suppressed Due to Excessive Length 5

Diego Calleja 2003-07-28 18:12:37 UTC Comment 7 [reply] [—]

2.6 O=itmsizx
I remember seeing this error in the past but I can't reproduce it anymore,
can someone reproduce it?

Adrian Bunk 2005-07-02 07:23:52 UTC Comment 8 [reply] [-]

Is anyone still observing this with recent 2.6 kernels?

Seth Goodman 2005-09-24 11:42:25 UTC Comment 9 [reply] [-]

Yes, I have the same problem as the OP on Debian Sarge and Debian testing (etch)
with both 2.6.11 and 2.6.12 kernels. My system has the LTN485S CDROM and
FW82801AA controller on the motherboard. Disabling DMA for this drive using

hdparm -d0 /dev/hdc

fixes the problem, even though Windows was able to use DMA on this drive on the
same hardware. The symptom is inability to mount a CD. Because this prevents a
successful Linux install from CD media, IMHO, this bug should be considered high
severity. The initial PIO bootloader on an install CD is able to read the CD
and load a kernel, but on booting into that kernel, it is unable to mount the CD
and the install cannot complete beyond that point. I had to install from
floppies to get this system running.

Nishanth Aravamudan 2006-05-09 14:37:34 UTC Comment 11 [reply] [-]
Seth, is this still a problem in 2.6.16/2.6.17 —— I know it's a bit of a pain,

but if you can keep us updated as to the bug's existence with the major
releases, at least, that'd be great.

Raul, are you sure you meant to respond to this bug? Your error appears to be
related to a USB drive?

Thanks,
Nish
Seth Goodman 2006-07-24 09:49:33 UTC Comment 13 [reply] [-]

I've changed the CDROM drive to get around this problem. If you consider it
important, I can put the drive model causing the DMA errors back in. I am now
running only stable (Sarge) with the current 2.6 kernel for Sarge.

Olaf Kirch 2007-03-12 03:07:40 UTC Comment 14 [reply] [-]

This bug hasn't seen any activity in 6 months. Okay to close?

Olaf Kirch 2007-03-22 01:37:00 UTC Comment 15 [reply] [-]

No feedback - closing.

Fig. 1: Motivating example for our study.

of the drive. Finally, in Comment-11, another developer (Nishanth) asks whether
Seth was still experiencing the issue—probably to know whether the issue was fixed.
However, Seth responded to Nishanth only after two months, stating that the problem
was not experienced anymore, but Seth was using a different hardware. Finally in
Comment-14, after six months, the assignee of the issue report (Olaf) asks again if
anyone was still facing the problem. By waiting for 10 days without any response,
Olaf considered the issue to be fixed and closed it.

Had the reporter of the issue (or any other user) quickly provided feedback for
developers in all of the opportunities (i.e., Comment-7, Comment-8, Comment-11,

6 Yonghui Huang et al.

\
—_—_—_————— —_ T ——— \' Data processing |

o))
| Issue repositories | | Data extraction o
i extual
| | : Extract I LDA RQz
| Y Extract questions in
comments
| Issue Tracking |—r> issue rIeSS::s : ™~
| Systems I reports P mpac -
| ! | Extract metrics ‘ | memcs
! b Memcs
[I

Reporl
________ e = — metrlcs

Fig. 2: Overview of our experiment

and Comment-14), the processing time of the Linux-53 issue report could had been
much quicker.

Although prior research has studied the questions raised by developers and the
characteristics of well-written issue reports (Bettenburg et al.| 2008aj;, Breu et al.
2009), we are the first to quantitatively analyze the impact of questions raised by
developers in the issue resolution process. We also build prediction models to capture
issue reports that will likely have questions raised at their filling time. We analyze a
much larger scale of issue reports than prior research (i.e., 519,645 issue reports). In
particular, we study the Linux, Firefox, and Eclipse projects. The goal of our work
is to improve the issue resolving process by providing early warnings for developers
and reporters as to whether a newly reported issue will likely receive questions. By
receiving such warnings, reporters should be more alert because their feedback will
be necessary. As for developers, they might choose to prioritize an important issue
report that will likely receive questions.

3 Data Processing

In this section, we present the dataset, and the steps to extract and process questions
from issue reports. Fig 2] depicts the overview process of our data processing.

3.1 Subject Systems

We study issue reports from three popular ultra-large-scale and open-source systems,
i.e., LinuxP} Firefox* and Eclipse®} Linux is known as a popular operating system.
Firefox is a well-known web-browser. Eclipse has over 250 different open source
projects, like the widely used integrated development environment (IDE) for software
development, modeling tools, reporting tools, and much more. As the three systems
are representative open source systems, studying issue reports in the three systems
can reflect the practice in the open source community.

For each system, we collect all its issue reports from the first issue report until
February 2016. For each issue report, we download all the properties and comments,

3 https://bugzilla.kernel.org
4 https://bugzilla.mozilla.org
5 https://bugs.eclipse.org/bugs

Title Suppressed Due to Excessive Length 7

Table 1: The number of issue reports in each studied ITS

ITS Collection # of # of resolved # of reports # of reports
period reports reports with questions without questions
Linux 2002 to 2016 27,100 23,134 10,882(47.04%) 12,252(52.96%)
Firefox 1999 to 2016 157,340 138,767 54,644(39.38%) 84,123(60.62%)
Eclipse 2001 to 2016 406,303 357,744 88,967(24.87%) 268,777(75.13%)
Total 590,743 519,645 154,493(29.73%) 365,152(70.27%)

Check :
|http://www.alsa-project.org/alsa-doc/doc-php/template.php37company=Creative+Labs&
card=Soundblaster+16&chip=sbl6&module=sb16

Fig. 3: An illustrative example of a url link containing “?”

May 10 12:11:54 jtb [9215,990028] [<ff{fffff81058215>T 7 |

try to wake up+0x1d1/0x1f6

May 10 12:11:54 jtb [9215.990034] [<ffffffff8l46bla3>] 7 printk+0x79/0x92
May 10 12:11:54 jtb [9215.990054] [<ffffffffa004cdbe>] ?
iwl_tx_agg_stop+0xda/0x212 [iwlcore]

May 10 12:11:54 jtb [9215.990059] [<ffffffff8105f0cl>]
warn_slowpath_null+0x23/0x39

May 10 12:11:54 jtb [9215.990077] [<ffffffffa0022763>]

_ ieee80211 stop tx ba session+0x69/0x94 [macB80211]

May 10 12:11:54 jtb [9215.990082] [<ffffffff8146de8b>] ? spin lock bh+0x20/0x4f
May 10 12:11:54 jtb [9215.990097] [<ffffffffa00228e0>]

Fig. 4: An illustrative example of call trace message containing “?”

as well as the changes made to the attributes (e.g., severity, priority, #CC) in the entire
history. As we aim to predict if questions can be raised from a newly created issue
report (RQ3), we retrieve the initial value of the attributes of issue reports and issue
reporters (details are discussed in Section [6.2) provided at the creation time of the
issue reports.

To examine the impact of raising questions on the issue addressing process, we
exclude the issue reports that are not resolved (i.e., issue reports still with the status
of NEW, ASSIGNED and REOPENED). Table |I| shows the descriptive statistics of
the issue reports that we collected from the issue tracking systems (ITSs) of the three
subject systems.

3.2 Question Extraction

To investigate all raised questions across the issue resolving process, we go through all
the comments of issue reports and extract the raised questions from the comments us-
ing regular expressions. Specifically, we consider a sentence ending with the question
symbol “?” as a question. We only extract questions from comments which are posted
by developers before the issue report is resolved. However, our extracted questions
might contain noises. In summary, there might be three kinds of noise in our extracted
questions:

8 Yonghui Huang et al.

Here is a snippet:
public static void main(String[] args) {
Display display = new Display();
final Shell shell = new Shell (display);
Button button = new Button(shell, SWT.PUSH);
button.setText("button.");
button.pack();
button.setlLocation(20, 20);
// shell.setLayout(new GridLayout());
display.addFilter(SWT.KeyDown, new Listener() {
public void handleEvent(Event e) {
shell.setOrientation(shell.getOrientation() ==
|SWT.RIGHT7T07LEFT ? SWT.LEFT TO RIGHT : SWT.RIGHTiToiLEFTD;
}

1)
shell.open();
while (!shell.isDisposed()) {
if (!display.readAndDispatch()) display.sleep();

}
display.dispose();

Fig. 5: An illustrative example of a code snippet containing “?”

1. URL links (e.g., https://www.**%/2) 1t is common that developers use a URL
link in a comment to refer other issue reports or external pages to help address
the issues. It is possible that a URL link contains the symbol of “?”. For example,
Fig 3| shows a URL link appears in the comments of the report Linux-135. In this
example, there exists the symbol of “?” in the URL link, and it is identified as a
question. To exclude such kind of noise, we use a regular expression to identify
all URL links (i.e., strings that start with "http://" or "ftp://") and exclude them.

2. Execution logs. It is common that developers paste execution logs in the comments
to help discuss and investigate the reported issues. Fig] shows an example of a
call trace embedded in a comment (i.e., in Comment-5 Linux-12595). We use a
regular expression to identify the embedded call trace from the comments. The
format of the call traces usually starts with a date and contains "address format"
(e.g., [<ffffffa002789f>]) before the symbol of “?”.

3. Code snippets. Code snippets embedded in a comment allow developers to discuss
and investigate the potential reasons for generating the corresponding issue in the
code snippet. However, code snippets can contain noises that are identified as
questions. For example, Fig [5] displays an example of noise that is identified as
a question in the code snippet embedded in Eclipse-29779 Comment-103. The
symbol of “? :” is an operator in programming languages (i.e., C, C++, Java and so
forth), and the symbol of “?” can exist in a code snippet. In this case, “?” is followed
by an identifier and a symbol of “:” (e.g., return num>max?num:max). Hence, we
exclude such noise using the regular expression to identify code snippets.

An issue reporter may submit additional comments that provide extra information
to enrich the description of the issue report. As shown in Fig[6] the reporter posts two

Title Suppressed Due to Excessive Length 9

Eclipse-Bug 1691:

Darin Wright [2001-10-10 22:17:42 EDT]:

Destription

When I get an error, I get a trace, it would be good to be able to select the
Exception class, right click and add a breakpoint and re-run the execution
up to the exception

Darin Wright [2002-02-26 14:52:26 EST]:
Comment1
Deferred

Darin Wright [2002-09-13 10:58:18 EDT]:
Comment2
Consider to 2.1

Darin Swanson [2003-10-06 13:47:58 EDT]:
Comment7
Just to check...but you meant to use the 1.4 support?

Fig. 6: An example of additional comment

q‘ David Tenser [:djst] 2002-10-15 15:09:48 PDT Comment 1

Why should there be different icons for the personal toolbar folders? They are
normal folders too. The folders in the personal toolbar should be easily
accessible from the Bookmarks Toolbar anyway.

| > As it has (slightly) different functionality, should it not look a little

different?

Fig. 7: An illustrative example of a replying comment

new comments (i.e., in Comment-1 and Comment-2) to enrich the information of an
issue report. For example, in Comment-1 the reporter mentions that the resolution
of the issue was deferred. In Comment-2, the reporter suggests that the issue report
should be considered for version 2.1. Therefore, we start to extract questions from the
first comment which is not posted by the issue reporter.

During the resolving process, developers might raise questions from the previous
comments instead of the description of issue reports. To ensure the extracted questions
are more related to the issue reports, we choose to use a conservative approach to filter
out questions raised from the replying comments. The subject issue tracking systems
support the feature of replying comments (i.e., start with the symbol of “>”), so we
can identify the replying comments by the feature. As illustrated in Fig[7] a question
(i.e., Why should there be different icons for the personal toolbar folders?) is raised
in a comment due to an early comment (i.e., As it has (slightly) different functionality,
should it not look a little different?). Hence, we exclude the extracted questions from
the replying comment.

10 Yonghui Huang et al.

3.3 Question Processing

After collecting the raised questions from the comments, we apply general textual
preprocessing steps, such as tokenizing text, removing stop words and stemming
words. Tokenizing text is to obtain a sequence of strings that do not contain delimiters
(e.g., white space and punctuation symbols). Stop words are the non-descriptive
words like “a”, “is”, “was”, and “the” (Venkatesh et al.,2016). The stemming step
aims to normalize the words to their ground forms (Tian et al., | 2016). For instance,
the stemmed version of “working” and “worked” is the same with “work™. We apply
the Porter stemming algorithm as previous studies (Jones| [1997; Tian et al. 2016;
Venkatesh et al.l [2016).

4 RQ1: What type of questions are asked by developers?
4.1 Motivation

Studying the most frequently asked questions helps us to better understand the in-
formation that developers need when resolving issues. Prior work have studied 600
issue reports to catalog the types of questions that are asked in issue reports (Breu
et al.; 2010). Since our goal is to study the impact of questions raised on the issue
resolution process, we expand this investigation using a larger scale of issue reports
and additional systems (i.e.,Linux). To answer this question, we first present our ap-
proach to extract topics from questions and then discuss the extracted topics. Details
are described in the subsections.

4.2 Experiment Setup

Differently from prior research Breu et al.| (2010) that use a qualitative approach
to analyze question types, we apply Latent Dirichlet Allocation (LDA) (Blei et al.
2003) to summarize the topics within raised questions. LDA is a statistical model
that is widely used for topic extraction in the literature of software engineering. LDA
uses a list of documents as its input. In our case, the input consists of a list of
raised questions—if an issue report contains more than one question, all questions
are treated as a single document. The output of LDA is the distribution probability of
each extracted topic in each document.

We follow the standard natural language processing steps (see Section [3.3) to
pre-process each document. Specifically, we remove stop words from each document
and do the stemming to normalize the document.

LDA Parameter Setting

We run with 1,000 Gibbs sampling iterations by following the guideline from previous
work (Griffiths and Steyvers,, [2004), and set the number of keywords for each topic
to be 20. The number of topics (we denote it by K) impacts the quality of the topics

Title Suppressed Due to Excessive Length 11

extracted by LDA (Arun et al.,|2010; |Cao et al.} 2009; Deveaud et al., [2014} |Griffiths
and Steyvers, 2004; Ponweiser, 2012). To find the optimal number of topics (we denote
by K), we compute the following three metrics:

— Arun2010 (Arun et al.,2010) that is computed based on two matrices (i.e., Topic-
Word and Document-Topics), which are generated from LDA. The lower value,
the better.

— CaoJuan2009 (Cao et al} 2009) that calculates the cosine distance of topics.
The minimum value of CaoJuan2009 indicates that the corresponding K is the
optimal number of topics.

— Grif fiths2004 (Griffiths and Steyvers, 2004; [Ponweiser, 2012)) that is computed
based on an estimate multinomial distribution of K topics to words in the corpus.
The maximum value of Gri f fiths2004 indicates that the corresponding K is the
optimal number of topics.

We apply the FindTopicsNumber function from R package Idatuning by varying
K from 2 to 500. As the FindTopicsNumber function takes a very long time to finish
for a large dataset, we apply it on a statistically representative sample of 2,368 issue
reports. We use the Sample Size Calculator9|to find out our statistically representative
sample (i.e., 2,368 issue reports) of our population (i.e., 154,493 issue reports) with
a confidence level of 95% and a confidence interval of 2%. The Equations [T] and [2]
demonstrate how to compute a representative sample size[’]

2. . —_—
_Z0)-(-p) 0
c

s

Where Z = 1.96 for a 95% confidence level, p is the chosen percentage (.5 should
be used for the worst case scenario), and ¢ = 0.02 is the confidence interval. The
output value of Equation|[T](i.e., 2,401) should be adjusted to the entire population by
using Equation

SSs

adj(ss) = 1 2

pop

Where ss = 2,401, and pop = 154,493. The output of Equation [2| is 2,364.
Our sample of issue reports was randomly selected from our 154,493 issue reports
that contain raised questions. Since our sample is statistically representative, the
distribution of topics in the 2,368 issue reports can represent the distribution of
topics in the 154,493 issue reports. Therefore, the number of topics obtained from a
statistically representative sample can represent the number of topics obtained from
the 154,493 issue reports. The optimal number of topics suggested by the three metrics
Arun2010, CaoJuan2009, and Grif fths2004 are 107, 162, and 182, respectively.
Accordingly, we set the number of topics as 150 in our experiment that is close to the
three suggested Ks.

6 https://www.surveysystem.com/sscalc.htm
7 https://www.surveysystem.com/sample-size-formula.htm

https://www.surveysystem.com/sscalc.htm
https://www.surveysystem.com/sample-size-formula.htm

Yonghui Huang et al.

12

Table 2: The distribution of topics in the issue reports for three subject systems. The topics in bold-face are the topics that are common in

all studied systems.

Linux i Firefox i Eclipse
Index Labeled Topics Frequency 7 Index Labeled Topics Frequency 7 Index Labeled Topics Frequency

1 Configuration 2,452(20.58%) 1 Safe mode 8,776(14.41%) 1 Current status 4,750(4.68%0)
2 Driver 2,443(20.51%) 2 Current status 4,005(6.58%) 2 Component 3,299(3.25%)
3 Commits 1,867(15.67%) 3 Reproduce steps 2,652(4.36%) 3 Reproduce steps 3,109(3.07%)
4 Current status 800(6.72%) 4 Crash 1,457(2.39%) 4 Final resolution 2,727(2.69%)
5 Final resolution 266(2.23%) 5 Extension 1,246(2.05%) 5 Plugin 2,648(2.61%)
6 Sound & Speaker 159(1.33%) 6 Image feature 1,087(1.79%) 6 Package dependencies 1,783(1.76%)
7 Expired report 156(1.31%) 7 Final resolution 1,055(1.73%) 7 Operating system 1,699(1.68%0)
8 Operating system 123(1.03%) 8 Cookies data 1,038(1.70%) 8 Version control 1,698(1.67%)
9 Concurrency 101(0.85%) 9 Browser 985(1.62%) 9 Jar dependencies 1,636(1.61%)
10 Email 96(0.81%) 10 Bookmark/History folder 922(1.51%) 10 Development environment 1,585(1.56%)
11 Suggestion 96(0.81%) 11 Page loading 871(1.43%) 11 Log information 1,582(1.56%)
12 Cache 89(0.75%) 12 User interface 869(1.43%) 12 Encoding 1,508(1.49%)
13 Closing report 72(0.60%) 13 Plugin 861(1.41%) 13 Requirement 1,364(1.35%)
14 Version Control 70(0.59%) 14 Tab groups 792(1.30%) 14 EMF 1,246(1.23%)
15 Memory 69(0.58%) 15 Operating system 781(1.28%) 15 Zipfiles 1,194(1.18%)
16 Frequency 65(0.55%) 16 Additional information 677(1.11%) 16 Suggestion 1,173(1.16%)
17 Level 65(0.55%) 17 Configuration 667(1.10%) 17 Workspace 1,158(1.14%)
18 Log information 62(0.52%) 18 Human oriented 630(1.03%) 18 Concurrency 1,128(1.11%)
19 Reproduce steps 61(0.51%) 19 Issue relation 610(1.00%) 19 IDT 1,094(1.08%)
20 Patch 59(0.50%) 20 Blocking issues 595(0.98%) 20 Solution 1,036(1.02%)
Topic ! 9,171(76.99%) 7 30,576(50.21%) 7 37,417(36.90%)

! The total number of the issue reports that contain the questions associated with the 20 most frequent topics.

Title Suppressed Due to Excessive Length 13

LDA Topic Labelling

Each LDA topic is represented by a vector of 20 words. To better understand the
meaning of each topic, we asked four graduate students to manually label each topic
based on its keywords (Barua et al. 2014)). The four students independently assign
labels. The four graduate students all study in computer science. One of them is a 3rd
year Ph.D. student, the rest of them are master students. Moreover, three of them have
at least four years of working experience. When different labels are assigned to the
same topic, a discussion is conducted until a consensus is reached.

As the space of the paper is limited, we only present the 20 most frequent topics
for each system in Table 2] For each topic, the frequency is computed as the number
of issue reports that contain questions associated with the topic . We consider that an
issue report (i.e., a document) is associated with topics, if the corresponding topics
are assigned the highest score by LDA in the document.

4.3 Results

In Linux, three topics, i.e., Configuration, Driver and Commits, appear in more
than a half (i.e., 56.76%0) of all issue reports. The topic, Configuration, refers to
questions raised by developers to clarify the hardware and/or software configuration
of the machine of issue reporters. For instance, questions related to Driver are raised to
clarify the detailed information of drivers for the reported issue. Questions associated
with Commits are asked to find out which commit introduces the issue. We think that
at least two types of questions (i.e., Configuration and Driver) can be reduced or even
avoided by developing a tool to automatically collect the configuration and driver
information for issue reporters.

In Firefox, the most frequently occurring topic is the Safe mode, which appears
in 14.41% of all issue reports. Firefox has a large number of add-ons. In the safe mode
of Firefox, all add-ons are disabled. When an issue is reported to Firefox, developers
need to ensure that the issue is caused by bugs of Firefox not by bugs of add-ons.
Therefore, developers usually ask issue reporters if Firefox is in the safe mode. To
avoid such types of questions, we suggest issue reporters to reproduce the issue in the
safe mode and explicitly mentions the usage of the safe mode in the description.

In Eclipse, there is no topic clearly occurring more frequently than others. As
shown in Table[2] the 20 most frequent topics only cover 36.90% of the population. One
reason may be that Eclipse project is embedded with multiple plug-in components. The
reported issues can be caused by various reasons from different plug-in components
and developers of different plug-in components have different focuses of the needed
information in the issue resolving process. It may be difficult to provide a universal
solution to reduce or avoid questions raised in the Eclipse issue reports.

As a summary, the majority of the 20 most popular topics vary across systems.
The list of the 20 most frequent topics in each system is shown in Table[2] The coverage
of the 20 most frequent topics also varies across systems. For instance, the 20 topics
appear in 76.99%, 50.21%, and 36.90% of issue reports in Linux, Firefox, and Eclipse,
respectively. The difference may be due to the characteristics of the three systems.

14 Yonghui Huang et al.

In Linux, developers deal with the kernel of an operating system to support different
hardware/drivers and various configurations. In Firefox, developers maintain a widely
used browser that is enhanced by many add-ons, and issue reports can be created
against bugs of Firefox or its add-ons. In Eclipse, there are many subprojects that do
not overlap too much with each other.

Among the 20 topics, there are only four common topics across systems.
The four common topics are Current status, Final resolution, Operating system,
and Reproduce steps. The topic Current status refers to questions that are raised by
developers to check the current status of an issue report. The resolution of an issue
report may be delayed for a long period (Zhang et al., |2012b), then developers lose
track of the issue report. The topic Final resolution refers to questions that clarify the
final decision made on issue reports, and it happens when developers cannot reach
a consensus. This type of question is likely to be reduced or avoided if all involved
developers decide to solve the issue only after the issue is fully discussed. Questions
related to topics Reproduce steps and Operating system are generally essential to
clarify the detailed steps and the environment to reproduce an issue. Issue reporters
should try their best to provide as many details as possible on the reproduce steps and
the environment.

From the results of the LDA modeling, the common topics of the questions
raised from the issue reports are Current status, Final resolution, Operating
system, and Reproduce steps among the three subject systems. However, the
majority of raised questions are specific to each system.

5 RQ2: Are issue reports with raised questions different from issue reports
without raised questions?

5.1 Motivation

There exist a considerable number of issue reports containing raised questions over the
issue resolution process. As shown in TableE], questions are raised in 47.04%, 39.38%,
and 24.87% of issue reports in Linux, Firefox, and Eclipse, respectively. Given that
we observe such high proportions of issue reports containing questions raised, we
empirically study whether issue reports containing raised questions have different
characteristics when compared to issue reports without questions. It is intuitive to
think that raised questions increase the time to resolve issue reports. However, it is
still important to study how large is the difference in magnitude of such a resolution
time. Scientifically investigating intuitive claims in software engineering is important,
since much of the common wisdom is quoted without scientific evidence (Bettenburg
et al.,[2008a).

On the other hand, if the time to resolve issue reports with raised questions is
indeed significantly larger, more research and tools should be invested to address why
such questions are asked in the first place (e.g., a reporter did not provide any feedback

Title Suppressed Due to Excessive Length 15

to the developer regarding whether an issue was fixed). Then, the missing information
should be provided from the start.

Our work quantitatively investigates a large scale of issue reports to understand
the differences of issue reports with raised questions. To answer this question, we
describe the metrics that we use to compare our issue reports and the null hypothesis.
Finally, we discuss our findings on the differences between issue reports with raised
questions and issue reports without questions. Details are described in the following
subsections.

5.2 Experiment Setup

In our experiment, we quantitatively measure the characteristics of issue reports with
raised questions in terms of four metrics.

— The time elapsed is the duration between the time when an issue report is responded
by the developers (e.g., posting comments or modifying some fields of an issue
report) and the time when the issue is resolved.

— The number of developers is the count of developers that are involved in the issue
resolving process.

— The number of comments is the count of comments that are posted by the issue
reporter or developers during the issue resolving process.

— The number of assignments counts the number of assignment/reassignments of
developers of an issue report.

The smaller the value of the aforementioned metrics, the more efficient is the
issue resolving process. Smaller values indicate that an issue is resolved quicker,
involves fewer developers, derives fewer comments, and is assigned to the appropriate
developer with fewer iterations.

Null Hypothesis

We divide issue reports into two groups for each system. The first group (as a control
group) contains all issue reports that do not have questions raised during the issue
resolving process. The second group (as a treatment group) contains all remaining
issue reports that have questions. For each of the four aforementioned metrics, we test
the following null hypothesis:

Hlo.' There is no difference in the distribution of the values of the metric between
the issue reports without and with raised questions.

To test the null hypothesis, we apply the Mann-Whitney U test (Sheskin|, [2003)
with the 95% confidence level (i.e., p-value < 0.05). The Mann-Whitney U test is
also known as the Wilcoxon rank sum test, which is a statistical method that does
not have assumptions about the distribution of two assessed variables, i.e., the values
of the assessed metric. If there is a statistically significant difference, i.e., p-value
<0.05, we reject the null hypothesis and conclude that the distribution of the values
of the corresponding metric is significantly different between the issue reports with
and without questions.

16 Yonghui Huang et al.

Linux-Bug 915:

Greg Kroah-Hartman [2003-07-12 20:32:55
UTC]:

Can you attach your .config?

Roger Luethi [2003-07-14 11:50:20 UTC]:
Created attachment-527

Greg Kroah-Hartman [2003-07-15 12:42:23
UTC]:

Ok, I've duplicated this now, I’ll work on it...

Linux-Bug 9147:

Erik Boritsch [2007-12-01 16:44:03 UTC]:
The bug is still there with CONFIG_ACPI_EC
is not set. Any other ideas?

Sebastien Caille [2007-12-05 15:16:34 UTC]:
I tried to dump /proc/interrupts every 5 sec-
onds. ... Something is definitely triggering the
irql when acpi=on...

Daniele C. [2007-12-05 15:44:15 UTC]:

... maybe i8042 multiplexer is triggering a wrong
IRQ.

Fig. 8: Examples of raised questions

After applying the Wilcoxon rank test, we apply the Cliff’s Delta effect-size
measure (Cliff, |1993). Cliff’s delta is a non-parametric effect-size measure to verify
the difference in magnitude of one distribution compared to another distribution. The
higher the value of the Cliff’s delta, the greater the difference of values between
distributions. For example, if we observe a significant p value, but a negligible effect-
size, we consider that the observed difference between distributions is not significant.
We use the thresholds provided by Romano et al| (2006) to interpret the effect-
size measures. The thresholds are defined as follows: delta < 0.147 (negligible),
delta < 0.33 (small), delta < 0.474 (medium), and delta >= 0.474 (large).

5.3 Results

The elapsed time of issue reports with raised questions is significantly larger than
the elapsed time of issue reports without questions. Figure[9]shows the distribution
of each metric in two groups, i.e., issue reports with questions (WQ) and issue reports
with no questions (NQ). The result of Mann-Whitney U test shows that there exists a
statistically significant difference between the issue reports with questions and without
questions (i.e., p-value<0.05) in the elapsed time.

We reject the null hypothesis H? for this metric. Additionally, we observe that the
group with questions has a longer elapsed time by comparing with the other group
(i.e., control group). In fact, our effect-size measures indicate that the difference in
the elapsed time between WQ and NQ is medium in all studied systems. This further
indicates that the difference in the elapsed time is significant.

The result suggests that issue reports with questions may contain non-negligible
waiting periods. There could be also an extra time to re-investigate the issue given

Title Suppressed Due to Excessive Length

— [g et
ot [4L @ U B |:|_
T T T T T T T T T T
8 9 4 Z 0 14 € Z T 0
(T+suNn02)Bo| sluswwoD # (T+s1unod)Boj wawubissy #
[]y ‘_.._....}..m.{ o
e e | =il §
T T T T T 1 T T T T T 1
¢t 0T 8 9 ¥ ¢ O 9 § v € ¢ 1T 0
(T+sAep)bo| swi] pased|g (T+swno2)bo| s1adojanaq #
o—--u[[l---{— g 000000 |------- |:|—
_--I]:l-{— CZ) cooo0o0 0o o |—
T T T T T T T T T T T T 1
oL 8 9 14 c 0 o€ (k4 o't 00
(L+spunoo)bo| sjuswwo) # (1+sjunoo)bo| Juswubissy #
e ol 4
o Jlbe | et o
T T T T T 1 T T T T
¢koL 8 9 v ¢ 0 8 9 14 4 0
(1+skep)bo| swi| pased|3 (1+suno9)bo| s1adojenaq #
I - e
— Mg |
T T T T T T T T T T 1
8 9 14 Z 0 o€ 0¢ 0T 00
(T+sun02)Bo| sluswwoD # (T+s1unos)boj uawubissy #
(TS I I EEERT 1+ %4 00 comomammment --| | |-{ o

2

T e

¢t 0T 8 9 v ¢ O

(T+sAep)bo| swi] pased|g

m.a}.[l o
T T T T T T
9 § ¥ € ¢ 1T 0

(T+swnoo)bo| s1adojanaq #

NQ WQ

NQ WQ

NQ wQ

NQ waQ

NQ WQ

NQ WQ

(c) Eclipse

(b) Firefox

(a) Linux

The distribution of the metrics for issue reports without and with questions (NQ: Issues reports that have no questions; WQ: Issue

Fig. 9

reports With Questions). We show the value of metrics by log scale based on 2.

18 Yonghui Huang et al.

the new information provided in the answers. For instance, an issue report of Linux
(i.e., Linux-Bug 915 in Fig. |8) shows that the assignee of the issue report named
Greg requested the configuration file from the reporter, and the reporter provided
the requested file after about two days. Then, the assignee reproduced the issue with
the newly attached configuration file after another day. If the configuration file was
provided at the creation time, three days could had been saved in the resolving time
of this issue report.

Issue reports with raised questions have more developers involved and more
comments. The results of the Mann-Whitney U test show that the issue reports with
questions have significantly more developers involved and comments (i.e., p-value <
0.05) in the three subject projects. Indeed, we observe a large effect-size difference
for both number of developers and comments in all studied systems.

If a developer cannot address the issue report by her/himself, s/he may ask ques-
tions that involve other developers to answer. For instance, in Linux-bug 9147 (Fig.
[8), a developer encountered an unexpected issue that the bug still exists with a spe-
cific configuration, therefore he or she asked help from other developers who may
be in charge of the particular module. The answer from the second developer further
triggers the discussion with the third developer.

Issue reports with raised questions have a higher rate of reassignments. The
results of the Mann-Whitney U test show that the issue reports with raised questions
have more reassignments than the issue reports without raised questions (i.e., p-
value < 0.05). After analyzing the effect-sizes, we observe that the difference in
reassignments is small in the Linux and Eclipse systems. Nonetheless, we observe
a negligible effect-size in the Firefox project, which indicates that the number of
reassignments is not significantly different between issue reports with questions and
without questions in Firefox.

An assignee may raise questions if she or he does not have the time to fix the
issue or cannot fix the issue (an example happened in Eclipse-bug 10025: would you
be able to fix this up?), or another developer could be involved to make a decision
on the issue report (an example happened in Eclipse-bug 123976: Shouldn’t this be
resolved as invalid instead of fixed?). In such cases, issue reports could be reassigned.
The negligible difference observed in Firefox, might indicate that Firefox has an
effective triaging process. However, more analyses should be performed to confirm
this speculation.

Issue reports with raised questions have a larger elapsed time and a higher
number of developers, comments, and reassignments. These results suggest
the importance of identifying why questions are raised in the first place and to
check whether they could be avoided to speed up the issue resolving process.

Title Suppressed Due to Excessive Length 19

6 RQ3: Is the occurrence of questions predictable?
6.1 Motivation

The results of RQ2 (see Section[5)) show that issue reports with raised questions have a
larger elapsed time, more developers involved, and a higher number of comments when
compared to issue reports without questions. Given these observations, we investigate
whether we can predict the occurrence of questions using only the information that is
available at the creation time of the issue reports. This is important to provide both
developers and reporters an early warning about whether a newly report issue will
trigger questions. For example, such early warnings could inform reporters that they
should be responsive to developers in case they want the issues to be resolved quickly.
To answer this question, we first describe the metrics that we use to build our
prediction model. Then, we present our modeling techniques, performance measures
and comparison. Finally, we discuss the predictive power of our influential metrics.

6.2 Experiment Setup

To address RQ3, we build prediction models. The dependent variable Y of our models
(i.e., the output of our predictions) is whether an issue report will have raised questions.
We code our dependent variable as Y = 1 if an issue report has raised questions and
Y = 0 otherwise. We extract several metrics to be used as inputs for our models
(i.e., independent variables). Finally, we validate our models using a 10-fold cross
validation approach. We provide more details about each of these steps below.

1) Independent Variables. To better describe the features and the attributes of
an issue report, we extract metrics from issue reports by four perspectives: the textual
factors, the characteristic factors, the supportive factors and the historical factors. In
total, we extract 13 metrics from issue reports.

a. Textual factors that are extracted directly from the textual data (e.g., the
description and title of an issue report). We collect the following three metrics.

— Length of the Title is defined as the number of words contained in the title of an
issue report. A longer title is more likely to provide sufficient information about
the issue, and thus developers may raise fewer questions.

— Length of the Description is the number of words in the description field of the
issue report. Similar to the title, a longer description is likely to provide more
elaborate information about the issue.

— Readability is the Coleman-Liau index(CLI) (McCallum and Peterson, [1982) of
the issue description, which has been applied in the evaluation of issue reports
(Hooimeijer and Weimer, |2007). The CLI reveals how difficult to understand the
text, and it is calculated as CLI = 0.0588 = L — 0.296 = § — 15.8, where L is the
average number of the characters per 100 words, and S is the average number of
sentences per 100 words. A lower readability is more likely to make developers
confused and ask questions.

20 Yonghui Huang et al.

b. Characteristic factors that are extracted from the meta-data of an issue re-
port (e.g., the importance and the complexity of a reported issue). We compute the
following five metrics.

— Is Regressive is a boolean variable that indicates whether the issue report was
reported and fixed before and reoccurs. Developers are more likely to raise more
questions on the issues that have the regressive property.

— Severity describes the severity of an issue report, and ranges from 1 to 5 (i.e.,
“enhancement” to “blocking”) in Linux, and from 1 to 7 (i.e., “enhancement” to
“blocker”) in both Firefox and Eclipse.

— Priority captures the priority of an issue report, and ranges from 1 (low priority)
to 5 (high priority).

— Is Blocking is aboolean variable that indicates whether the issue must be addressed
before addressing the issues that are listed in the “Blocks” field.

— Is Dependent is a boolean variable that indicates whether another issue must be
addressed before addressing the reported issue.

c. Supportive factors that are extracted from the information used to assist de-
velopers to reproduce and resolve the reported issue. We calculate the following three
metrics.

— Has steps to reproduce is a boolean variable that indicates whether an issue report
describes the steps to reproduce the reported issue. We identify whether an issue
report includes the steps to reproduce by searching the keywords "steps", "repro-
duce", and "steps to reproduce” in the description of the issue report. Developers
are more likely to ask questions about how to reproduce the issue, if details of the
reproduce steps are missing in the issue report.

— The number of attachments counts the attachments that include the patches and
the testing case for the issue report.

— The number of CCs is the number of unique developers contained in the carbon-
copy(CC) list of the issue report. We retrieve the history of activities in each issue
report to use only the CCs that are provided at the issue reporting time. Hence,
our model does not rely on the updated CCs that are later provided by developers.
A developer listed in the CC field will get informed if there is a change in the
issue report. More developers included in the CC list indicate a higher chance of
interactions among developers in the early stages of an issue report.

d. Historical factors that are computed based on the history of the reporter that
happened before the creation time. We compute the following two metrics.

— Reputation of the reporter is a float value to describe the reputation of the issue
reporter. We compute the reputation of a reporter as the proportion of issue reports
that are previously filed by the reporter and get fixed in the end (Guo et al.,2010bj
Hooimeijer and Weimer,[2007): reputation = %. Note that 1 is added
to the denominator in case a reporter did not report any issues in the past.

— The rate of rejected issues previously reported. Issue reports can be rejected as dif-

ferent resolutions, e.g., Worksforme, Duplicate, Invalid and so on. There are nine,

Title Suppressed Due to Excessive Length 21

o _
IS}
—
° — 5 B
o 2 8 2
- c > = =
<} - 8528 aoF 2
2 25 0« &
= 2 a ¢ =%5%¢
™ 3 83 Q£ g 9 c E
42 2w o 3 n T 8B
o o = 9 0w D0
893 o o c g
s 28 & g£8§¢&
t|50C 5 02,
° lgs s 20 £
i=2 (s}
a x g c g..('_)':
a | T [l £ © a
c o 4 - S o
154 ER]
£ h=] wg
§ S- R £ 3
x > = 2
Q T E 8 = o
@ v o R oo =& 2
—_—————=E a8 58— —————— [
a2 zZ ot @A ow
8818322 F - 2 >
Lo =53 EQX S <
50 s 35 2 3 e
< o, EE‘Q & sz
x=%% 908 s 3
@ L 2 5 o c 2
% £ D2 % IS
s s e T
2o g 2%
T © T
X o ga
o
2
T
hd

Fig. 10: The Spearman correlation analysis for Linux. The dotted red line indicates
the threshold value of 0.7. We show only the correlation analysis for Linux for the
sake of brevity, since the analyses for Firefox and Eclipse obtain a similar behaviour
(i.e., none of the metrics are correlated).

seven and six types of resolutions for rejecting issue reports in Linux® Firefox?]
and Eclipsd|respectively. To better describe the experience of developers, we use
a list of float values to indicate the rate of different types of rejected issue reports
previous reported by the reporter. We use 7; to denote the i, type of rejected
resolution (i.e., i = 1 to 9 in Linux, 1 to 7 in Firefox and 1 to 6 in Eclipse), and

T; T; _ lopenednT;|
calculate raterepo”er as raterepor,er = Topened|+l -

2) Metric computation. The values of all aforementioned metrics are collected
using only the information that is available at the creation time of issue reports. There-
fore, we can apply these metrics to predict the chance of having questions raised at
the creation time of an issue report. For the fields (e.g., severity, the number of CC)
whose values may be changed during the issue resolving process, we trace back to the
initial value that is filled in the creation time of an issue report.

3) Metric selection. The existing highly correlated factors can lead to overfitting
of a model (Wikipedia, 2017). To analyze correlation, we calculate the Spearman
rank correlation for our metrics to test whether there is any highly correlated pair of
metrics. We apply the variable clustering technique (i.e., R function varclus) to see
the correlation coefficient p. If the correlation coefficient of a pair of metrics is higher
or equal to 0.7 (McIntosh et al.| 2015} Rakha et al., 2015} [Strobl et al., [2008)), we

8 https://bugzilla.kernel.org/query.cgi?format=advanced
9 https://bugzilla.mozilla.org/query.cgi?query_format=advanced
10 https://bugs.eclipse.org/bugs/query.cgi?format=advanced

22 Yonghui Huang et al.

consider the pair of metrics is highly correlated and pick only one of them. Fig. [I0]
depicts the Spearman rank correlation of the metrics in Linux as an example. The
analyses for Firefox and Eclipse presented a similar behaviour, i.e., no correlation
between metrics above 0.7. As there is no any pair of metrics that has the correlation
coefficient value greater or equal than 0.7, we do not exclude any metrics in Linux,
Firefox, and Eclipse.

Prediction Model

To build a better prediction model, we experiment with three different prediction
models (Rahman and Devanbu, 2013), i.e., random forest, logistic regression and
Naive Bayes. Logistic regression is a generalized linear model which is a pretty
well-behaved classification algorithm that can be trained as long as the features are
expected to be roughly linear (Dayton, |1992; |Hilbe, 2009). Unlike logistic regression,
the random forest is an ensemble learning model and does not expect linear features
or even features that interact linearly(Kamei et al., 2010; Liaw and Wiener, 2002).
Naive Bayes is a simple probabilistic classifier, which applies Bayes’ theorem with the
assumption of independence between every pair of features (Domingos and Pazzanil
1996; Rish, [2001).

Model Performance

To evaluate the performance of the prediction model, we use precision, recall, accu-
racy, and F-measure, which are explained below.

— Precision (precision) is defined as the proportion of the issue reports that are
predicted as having questions and truly have questions (Davis and Goadrichl
2006; Powers}, 2011): precision = TpTer.

— Recall (recall) measure the completeness of a prediction model. A model is
considered as more complete if more issue reports with questions could be cap-
tured (Davis and Goadrich, 2006; [Powers, 2011): recall = %.

— F-Measure (F-measure) is the harmonic mean to describe both precision and

recall measures in a single value (Rahman and Devanbu, 2013): F-measure =
o) precisionxrecall

— Accuracy (accuracy) calculates the percentages of the correct prediction (Rahman
and Devanbu, 2013): accuracy = %.

— Area Under Curve (AUC) gives us an overview of the ability of the prediction
model. AUC is the area under the curve plotting the true positive rate against the
false positive rate. The AUC value could be ranged from 0.5 (worst, i.e., random

guessing) to 1 (best, i.e., all targets could be captured by the prediction model).

Model Validation & Comparison

To obtain a reliable performance measure, we apply ten times of 10-fold cross-
validation. In the 10-fold cross-validation, the data is equally divided into 10 parts. In
each fold, the 9 parts are used to train the model and the remaining part is used to test

Title Suppressed Due to Excessive Length 23

Table 3: The median value of performance measures of our models in the three studied
systems. The values shown in the table refer to the prediction of the positive class, i.e.,
issue reports that received questions (Y = 1). Bold font highlights the performance of
the best model in each system.

Model \ System Precision Recall F-Measure Accuracy AUC
Random Linux 0.70 0.70 0.70 0.72 0.78
forest Firefox 0.52 0.57 0.54 0.62 0.65
Eclipse 0.37 0.66 0.47 0.63 0.70
Logistic Linux 0.71 0.62 0.66 0.70 0.76
regression | Firefox 0.53 0.52 0.53 0.63 0.65
Eclipse 0.37 0.55 0.44 0.65 0.66
Naive Linux 0.68 0.49 0.57 0.65 0.70
Bayes Firefox 0.50 0.38 0.42 0.60 0.60
Eclipse 0.36 0.39 0.38 0.68 0.63
Random Linux 0.47 0.50 0.48 0.50 0.50
guessing Firefox 0.39 0.50 0.44 0.50 0.50
Eclipse 0.25 0.50 0.33 0.50 0.50

the model. To compare the performance of our selected prediction models, we apply
the Scott-Knott effect size clustering (SK-ESD) (Tantithamthavorn et al.,[2015]) on the
results of the ten times cross-validation. The Scott-Knott effect size clustering ranks
the performance based on the effect size of their differences. We use the R package
ScottKnottESD for the comparison.

6.3 Results

It is feasible to predict the occurrence of questions solely based on the infor-
mation that is available at the creation time of the issue reports. Table 3 shows
the precision, recall, F-Measure, accuracy, and AUC of our prediction models. For
instance, the random forest model achieves the AUC values at 0.78 in Linux, 0.65 in
Firefox, and 0.70 in Eclipse, significantly outperforming the random guessing with a
large margin (i.e., from 0.15 to 0.28). The random forest model generally performs
the best in our selected models in terms of F-measure and the AUC value. The result
of the SK-ESD shows that the AUC value achieved by the random forest model is
statistically significantly higher than the logistic regression model and Naive Bayes
model, except in Firefox where the logistic regression model achieves the similar
performance than the random forest model (i.e., both with a median AUC of 0.65).
During the issue resolving process, additional information (e.g., discussions
among developers) can be collected as developers progress. The additional infor-
mation that can be collected at a later stage of the issue resolving process is likely to
improve the performance of the model in predicting the raising questions. However,
since our goal is to give developers an early warning when a new issue report is
created, it is worth mentioning that our model is purposely built under a difficult set-
ting (i.e., all metrics are collected using only the information available at the creation
time, and any other information that can be collected at a later stage of the issue
resolving process is not used). As a summary, we conclude that it is feasible to predict

24 Yonghui Huang et al.

Table 4: The five important metrics in the random forest models. The metrics are
clustered and ranked using Scott-Knott effect size clustering.

ITS Rank Metric Importance
Linux 1 Number of CCs 0.1048
2 Priority 0.0151
3 Readability 0.0114
4 Number of attachments 0.0108
5 Description length 0.0076
Firefox 1 Number of CCs 0.0419
2 Severity 0.0076
3 Reputation 0.0069
4 Rate of DUPLICATE 0.0059
5 Description length 0.0058
Eclipse 1 Number of CCs 0.0255
1 Reputation 0.0255
2 Description length 0.0173
3 Rate of DUPLICATE 0.0151
4 Rate of WORKSFORME 0.0114

the occurrence of questions for newly created issue reports, especially in Linux and
Eclipse.

Influential Factors

To find the influential factors, we apply the permutation test technique (Strobl et al.,
2008)). Specifically, each metric is randomly permuted and a model is built with the
permuted metric. We use the importance R function from the RandomForest package
to conduct the permutation test. Next, we apply the Scott-Knott effect size clustering
(SK-ESD) (Tantithamthavorn et al.l [2015) to group the importance scores of the
metrics. If there is no significant difference in the importance scores between metrics,
those metrics are considered as having the same rank.

The number of carbon-copy(CC) is the most influential factor in all three
subject systems. Table [4] shows the average importance value of all the top five
influential metrics based on the results of Scott-Knott effect size clustering. We
observe that the number of CCs is the most important metric in our three studied
systems. A long CC list may indicate that the issue reporter intentionally involves
more developers in the issue report. From one perspective, the involvement of more
developers is likely to trigger questions. However, a short CC list may also trigger
questions by developers who notice the issue report later. Figure[TT|shows an example
of this situation in the Linux-32 issue report. In Comment-2 (4 days after the issue
was reported), the developer Luke-Jr adds himself in the CC list and asks whether
someone else is already working on the issue. In Comment-3 (after one day), the
developer Khoa mentions that James (another developer) could be willing to tackle
the issue report based on his list of maintainers.

It would be useful if ITSs could provide suggestions for reporters about whom they
should add in the CC list. Had Luke-JR, Khoa, and James been listed from the start,
the developers could have saved 5 days. These CC-list suggestions could be based on
the statistics of the ITSs or on data provided by developers themselves (e.g., the list of

Title Suppressed Due to Excessive Length 25

Luke-Jr 2002-11-18 09:58:36 UTC Comment 2 [reply] [-]

Is anyone working on this or know why they don't compile? I'd like to try and
make a patch, but I have no idea how the kernel works or what the actual problem
is here.

Khoa Huynh 2002-11-19 09:34:55 UTC Comment 3 [reply] [-]

Based on my list of maintainers, I see the maintainer for console framebuffer
drivers is:

Name : James Simmons
Email: Jsimmons@transvirtual.com

I will try to contact James Simmons and see if he is willing to tackle this
bug. In the mean time, if anyone would like to try for a patch, please
go ahead and attach the patch to this bug report. Thanks.

Fig. 11: Additional question by a developer who noticed the issue report later (Linux-
32 report).

Cork

Comment 1+ 5 years ago
What are you referring to by "unknown website” could you provide some more information?

Flags: needinfo?(shyam0427)

(mostly gone) Xtc4UaLL [:xtcauall]
Comment 2 + 5 years ago

Resolving due to lack of response.

Status: UNCONFIRMED - RESOLVED
Last Resolved: 5 years ago
Resolution: - - INCOMPLETE

Fig. 12: The issue report Firefox-886686 was closed due to the lack of response from
the reporter.

maintainers kept by Khoa in Comment-3 of Figure[TT). In any case, reporters should
provide a detailed description. This may not prevent all questions raised during the
discussion, but at least can avoid questions raised against the issue description.

Moreover, each studied system obtains a different important metric in the second
rank. The second most important metrics in Linux, Firefox, and Eclipse, are prior-
ity, severity, and reputation, respectively. The priority and severity metrics denote
the importance level of a given issue report[TT] This level of importance is strongly
associated with the likelihood of raising questions in issue reports (in the Linux and
Firefox projects). If a reporter is aware that his/her reported issue has a high priority
or severity, s/he should try the best to be responsive to the questions of developers.
Figure[12] shows an example of a high priority and severity (i.e., P1 critical) issue re-
port that was resolved as INCOMPLETE due to the lack of response from the reporter.
In Comment-1, the developer (Cork) asked for clarification in the same day that the
issue was reported. After two months, in Comment-2, the issue was closed due to the
lack of response. If the reporter had provided feedback sooner, the report could have
been closed much earlier.

On the other hand, reputation is the second most important metric in Eclipse.
A reporter with a high reputation may know how to better write an issue report,

I https://www.mediawiki.org/wiki/Bugzilla/Fields#Importance

https://www.mediawiki.org/wiki/Bugzilla/Fields#Importance

26 Yonghui Huang et al.

Dirk Fauth 2014805814 08:10:32 EDT Description

Since the introduction of the new message extension and the localization update to
the application model, it is necessary to operate using valid Locales.

If a user starts an Eclipse application using the Inl parameter and a invalid
Locale, the new mechanism tries to create a valid Locale out of the invalid
argument. The same applies for changing the Locale at runtime using the
ILocaleChangeService.

This issue was mainly already fixed with Bug—433890.

But there is one case where a user is still able to put a invalid Locale into the
context.

In E4Application#createDefaultContext () a check is performed whether
Locale.getDefault () returns a valid Locale. If not, a Locale that can be extracted
out of the invalid startup parameter or Locale.ENGLISH as default will be put to
the context. But Locale.getDefault() is currently not updated.

If a user now tries to set a Locale via ILocaleChangeService and uses a Locale
String that is not valid (say xxxYY), the ResourceBundleHelper.tolLocale() will
return Locale.getDefault() as it is not possible to evaluate a valid Locale
otherwise. As we didn't update the current set system default Locale, a invalid
Locale will find its way into the context.

A possible fix is already pushed to Gerrit: https://git.eclipse.org/r/#/c/26366/

Lars Vogel 2014810820 17:17:33 EDT Comment 11

Marking as fixed, thanks Dirk for your contributions.

Fig. 13: The reporter of Eclipse-434846 has a high reputation of 0.94 in our data. He
provided a contribution to the project when reporting his issue.

which implies that less questions are asked in such reports. Another explanation is
that reporters with a high reputation may gain the trust of developers, which lead to
less questions asked, whereas a lower reputation may lead developers to ask more
questions. Issue reporters should actively work to build a good reputation within the
project. For example, reporters should actively answer the questions of developers,
participate in the discussions of other issue reports, and report high quality issue
reports (Bettenburg et al., 2007). Another factor in play is whether the reporter can
present a contribution to the project. Figure [I3] shows an example of an issue report
from Eclipse (Eclipse-434846 report) that was written by a high-reputable reporter
(his reputation value is of 0.94 in our data). We observe that the reporter provided many
details in the description of the issue report, while also providing a possible patch for
the fix. In Comment-11, the developer Lars-Vogel explicitly thanked the reporter for
his contributions. A similar dynamic was observed by Gousios et al. (Gousios et al.,
2015)) in which pull-requests are more likely to be accepted if they are submitted by
contributors with a high reputation.

Finally, we observe that the description length is also a common important metric
among the three studied systems. This result resonates with the intuition that the
amount of detail provided in an issue report is likely to influence the number of
questions raised in such a report. Reporters should write the description of their
issues carefully and provide useful details—steps to reproduce, logs, error messages,
operational system, hardware, and the reporter’s attempts to overcome the issue (if
applied).

Title Suppressed Due to Excessive Length 27

It is feasible to predict if future questions will likely be raised by developers
in issue reports. We recommend reporters to try their best to write CC lists
that involve the appropriate developers, build a strong reputation within the
project, provide a detailed description in their issue reports, and provide
feedback as quickly as possible.

7 Threats to validity

In this section, we discuss the threats to the validity to our study, by following Yin’s
guidelines (Yinl 2013) of case study research.

External Validity concerns the threats to generalize our findings. Our three subject
systems are representative open source systems that have a long history. As a result,
our findings can reflect the current practice in open source community. Although
our findings may not directly applicable to proprietary systems, our approach can
be applied to any system with an issue tracking system to find the common types
of questions, the impact of raising questions and the feasibility of predicting the
occurrence of questions.

Internal Validity concerns the threats coming from the analysis methods and
the selection of subject systems. The threat to our internal validity comes from the
extraction of questions. Issue reports are free-form text, thus there exist different
kinds of noise (i.e., link information, log information that contain question mark).
To mitigate the noise, we manually examine the patterns from a sample set of issue
reports. In addition, our text metrics may express different complexities despite their
sizes, i.e., different people may describe the same problem using more or less words,
or even more complex terms.

Another internal threat is that the extracted questions can be raised against a
previously posted comment other than the description. We excluded the comments
that are posted to explicitly reply a previous comment. However, it is worth adding
more criteria to improve the accuracy of extracting questions.

Conclusion validity concerns the relationship between the treatment and the
outcome. In our study, the elapsed time may be over-estimated, as the assignee might
be working on other issues at the same time or is taking vacations for many days.
Therefore, we also report three other metrics (i.e., the involved developers, the number
of comments and the number of assignment) to measure the impact of raising questions
on the issue resolving process. Our findings remain consistent across the four metrics.
Nonetheless, it is helpful to obtain the ground truth by directly interviewing developers.

The raised questions may have positive effects. For example, the raised questions
can make the issues resolved in a correct way, and cause fewer regressions or reopens.
However, from a statistical comparison of our effort metrics between the control group
(i.e., the issue reports do not have questions) and the treatment group (i.e., the issue
reports containing questions), the issue reports containing questions generally have
a larger elapsed time, number of developers, number of comments, and number of
reassignments. Nevertheless, it is important to note that we cannot imply a causal

28 Yonghui Huang et al.

relationship between the increased values of, for example, elapsed time and the act
of asking questions in issue reports. For example, issue reports with raised questions
may be more associated to feature requests rather than bugs, which could take more
time to complete. Our goal is to measure the characteristics of issue reports with
raised questions. This is important to be aware that questions are likely to be raised,
so that users and developers can provide more information at the issue reporting time
or act more quickly when a question is asked.

8 Related Work

In this section, we discuss the research related to our study. Since we study an aspect
of the issue resolution process (i.e., the questions raised by developers), we first
discuss the research related to the issue resolution phases (i.e., triaging, resolution,
and integration). Later, we group the related work into two categories. The first
category consists of studies about developer discussions in issue reports and studies
on the characteristics of well written reports.

8.1 Issue Resolution Process

In recent years, much research has been devoted to the issue resolution process (An-
balagan and Vouk, |[2009; |Anvik et al.||2006; |Bhattacharya and Neamtiul 2011} (Giger
etal.l2010;|Guo et al.||2010a; Herraiz et al.,2008;|[Hooimeijer and Weimer,[2007; Kim
and Whitehead, |2006; Marks et al., 2011} |[Panjer, 2007} Saha et al., 2014; [Weifet al.,
2007} [Zhang et al.l [2012al 2013). First, one must decide whether an issue is worth
resolving and which developer should be responsible of an issue report /Anvik et al.
(2006). This process is mostly known as issue triaging. Hooimeijer and Weimer
(2007) built models to classify the cost of triaging an issue report (e.g.,“ ‘cheap” or
“expensive”). Kim and Whitehead| (2000) studied the time required to resolve issues
in the ArgoUML and PostgreSQL projects. Additional research has also been devoted
to study the required time to resolve issue reports. For example, Weifet al.| (2007)
and [Zhang et al.| (2013)) estimated the time to resolve an issue based on the similarity
between two issue reports. |Guo et al.| (2010a) used logistic regression to study the
likelihood that an issue report will be resolved. /Guo et al.|(2010al) obtained a precision
of 0.68 and a recall of 0.64.

A closed issue report may also be re-opened if the solution for such an issue is
deemed as unsatisfactory (Shihab et al.l [2010; Xia et al.| 2015} Zimmermann et al.,
2012)). [Shihab et al.| (2010) studies the re-opened issues of the Eclipse project. The
authors build prediction models based on several factors, such as the work habits
(e.g., weekdays), the amount of time to fix an issue, and the experience of the issue
assignee. Their prediction models achieve F-measures up to 0.71. [Xia et al.| (2015)
further improve the models proposed by |[Shihab et al.| (2010), achieving F-measures
up to 0.86.

When resolving issue reports, developers may also find that some issue reports
are very similar to other reports. Such similar issue reports are marked as duplicate

Title Suppressed Due to Excessive Length 29

reports (Bettenburg et al.l 2008b; Rakha et al., 2016, 2017; Runeson et al.| 2007;
Sun et al.; 2010, 201 1)). Duplicate reports can be harmful, since developers will likely
invest effort on them before noticing that they are duplicate. Rakha et al.| (2016}
2017) investigate the needed effort to identify duplicate issue reports and propose an
automatic approach to identify such duplicate reports.

Finally, recent studies have investigated the integration and deployment phases of
resolved issues. Studies performed by|da Costa et al.|(2017alb) investigate the required
time to deliver resolved issues to end users. Morakot et al.| (2015} |2017) studied the
risk of delaying software releases posed by certain issue reports. Contrary to the
aforementioned studies, our work focuses on the characteristics of issues reports with
raised questions.

8.2 Developer discussion in issue reports

There are few studies that investigate the questions raised by developers. For instance,
Breu et al. (Breu et al., 2009, 2010) quantitatively and qualitatively analyze the
questions raised by developers in 600 issue reports. They find that the active and
constant participation of reporters is an important factor that affects the progress
of resolving issues. Their work focuses on understanding the questions themselves,
while we aim to study the characteristics of issue reports with raised questions and the
feasibility to predict the occurrence of these questions. We also study a much larger
scale of issue reports (i.e., 519,645 issue reports).

Sillito et al. (Sillito et al.| |2006) study the questions raised by programmers
during the software evolution tasks. They categorize 44 kinds of questions asked
by programmers, and the questions are divided into four types (i.e., finding initial
focus points, building on the points, understanding subgraph, and questioning over
groups of subgraphs). Herbsleb and Kwanna (Herbsleb and Kuwana, |1993) investigate
questions that are asked during the designing stage. Project requirements are the most
concerned topics in the questions asked by designers. Different from these studies,
our collected questions are raised in various stages of software maintenance tasks,
such as issue triaging, issue resolving, code reviewing, and testing.

Erdem et al. (Erdem et al., |[1998)) investigate the questions raised by users, and
develop a task model based on the questions. The task model could be applied in
generating the explanation to questions from users. Comparing to their work, we
highlight the characteristics of issue reports that contain questions during the issue
resolving process, which are overlooked by their work (Erdem et al., [1998)).

8.3 Characteristics of well-written reports

One of the reasons for raising questions in issue reports is to ask information that could
have already been provided by reporters. Bettenburg et al. . (Bettenburg et al.| 2007}
2008a) conduct a survey on 466 developers and reporters of three systems (Apache,
Eclipse and Mozilla). The authors investigate what are the characteristics of well-
written reports. In addition, the authors propose CUEZILLA, a tool that recommends

30 Yonghui Huang et al.

how reporters may improve the quality of their issue reports on the spot, based on
information mined from the Issue Tracking System. Differently from prior work, our
goal is to study the characteristics of issue reports with raised questions instead of
studying and recommending the characteristics of a well-written report. Additionally,
we study 519,645 issue reports, 154,493 containing raised questions, to quantitatively
investigate the differences of issue reports with raised questions on the issue resolution
process. Finally, we propose models (Random Forest, Logistic Regression, and Naive
Bayes) to predict whether an issue report will likely raise questions by using metrics
that can be collected during the filing time of an issue report. Although Bettenburg
et al. (Bettenburg et al.| 2008a) observe that developers give little importance to
attributes such as severity and priority, our models show that these attributes are
important in our Linux and Firefox models to predict the occurrence of questions.

Erfani Joorabchi et al. (Erfani Joorabchi et al.,[2014) observe that 17% of theirissue
reports data consists of non-reproducible issue reports. The authors observe that such
non-reproducible issue reports lead developers to spend a considerable time and effort
on them. In our work, we observe that issue reports with raised questions take longer
to be resolved. Herbold et al. (Herbold et al., [2011) indicate that the reproduction
steps are the most important information in issue resolving, and introduce a non-
intrusive GUI usage monitoring mechanism to support issue reproduction. Rohem
et al. (Roehm et al.l 2013) also provide a tool to monitor the interactions between
users and their applications, which could help developers analyze the user interaction
traces and derive steps to reproduce from the monitored interaction traces. We find
that “Reproduce steps” is one of the common types of questions among our studied
systems. Hence, we conjecture that the tools proposed by [Herbold et al.| (2011) and
Roehm et al.|(2013) may be applied to reduce the chances of raising questions to some
extent.

9 Conclusion

When resolving issue reports, it is common for developers to ask questions to clarify
the issue description. However, extra time is added to the issue resolving process,
as developers need to wait for the response after raising questions. In this paper, we
conduct an empirical study to understand the characteristics of issue reports with
raised questions. We investigate three representative open source systems including
Linux, Firefox and Eclipse. We observe that questions are raised in 47.04%, 39.38%,
and 24.87% of all resolved issue reports in the Linux, Firefox, and Eclipse projects,
respectively.

First, we apply the LDA to extract the topics of questions. We find that there are
only four common topics of questions, including Current Status, Final resolution,
Operating system and Reproduce steps in the three subject systems. In the three
subject systems, the majority questions vary across systems. The topics identified by
our approach can help developers understand the reasons behind the raised questions.

Second, we measure the characteristics of issue reports containing questions in
terms of four measures: (i) the time elapsed for resolving an issue, (ii) the number of
involved developers, (iii) the number of comments, and (iv) the number of assignments.

Title Suppressed Due to Excessive Length 31

We observe that issue reports with raised questions have significantly greater values
in all of the four studied metrics. Therefore, it is important for the development team
to understand why many questions are raised and provide the information in advance
whenever possible.

Finally, we investigate the feasibility of predicting the occurrence of questions at
the creation time of an issue report. We collect 13 metrics that are available at the
creation time and experiment them with three prediction modeling techniques. We find
that the random forest model achieves the best performance in terms of F-measure and
the AUC values. In particular, our model achieves the AUC value of 0.78, 0.65, and
0.70 in the Linux, Firefox, and Eclipse projects, respectively. Therefore, we conclude
that it is feasible to give developers and reporters an early warning of the issue reports
that are likely to raise questions. The issue reporters and developers should pay more
attention to the issue reports with a high chance of having questions raised. More
importantly, we recommend developers to provide a full checklist or design a tool
to automatically check if necessary information is missing in a newly created issue
report. Also, ITSs could provide a feature that warns the involved people when a
question (not an usual comment) was asked in the issue report. Another important
improvement would be to indicate the developers who should be in the CC list from
the start.

In the future, we plan to work closely with developers to design a rule-based tool
to highlight the missing information in a newly created issue report, and integrate
our prediction model to the issue tracking system. Moreover, we are interested in
quantifying how much unnecessary questions can be reduced, and how much the
efficiency of the issue resolving process can be improved by removing unnecessary
questions.

Acknowledgement

The authors would like to thank Wenhui Ji from Beihang University, Yongjian Yang
and Pradeep Venkatesh, Mariam El Mezouar from the Software Reengineering Re-
search Group at Queen’s University for their valuable help on the manual labeling
task for this paper.

References

P. Anbalagan and M. Vouk. On predicting the time taken to correct bug reports in
open source projects. In Proceedings of the 2009 IEEE International Conference
on Software Maintenance, ICSM ’09, pages 523-526, Sept 20009.

John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this bug? In
Proceedings of the 28th international conference on Software engineering, pages
361-370. ACM, 2006.

R Arun, Venkatasubramaniyan Suresh, CE Veni Madhavan, and MN Narasimha
Murthy. On finding the natural number of topics with latent dirichlet allocation:
Some observations. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 391-402. Springer, 2010.

32 Yonghui Huang et al.

Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are developers talking
about? an analysis of topics and trends in stack overflow. Empirical Software
Engineering, 19(3):619-654, 2014.

Olga Baysal, Michael W Godfrey, and Robin Cohen. A bug you like: A framework
for automated assignment of bugs. In Program Comprehension, 2009. ICPC’09.
IEEE 17th International Conference on, pages 297-298. IEEE, 2009.

Nicolas Bettenburg, Sascha Just, Adrian Schréter, Cathrin Weil3, Rahul Premraj, and
Thomas Zimmermann. Quality of bug reports in eclipse. In Proceedings of the
2007 OOPSLA workshop on eclipse technology eXchange, pages 21-25. ACM,
2007.

Nicolas Bettenburg, Sascha Just, Adrian Schréter, Cathrin Weiss, Rahul Premraj, and
Thomas Zimmermann. What makes a good bug report? In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software engineering,
pages 308-318. ACM, 2008a.

Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. Du-
plicate bug reports considered harmfulE really? In Software maintenance, 2008.
ICSM 2008. IEEE international conference on, pages 337-345. IEEE, 2008b.

Pamela Bhattacharya and Iulian Neamtiu. Bug-fix time prediction models: Can we
do better? In Proceedings of the 8th Working Conference on Mining Software
Repositories (MSR), pages 207-210, 2011.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003.

Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Frequently
asked questions in bug reports. Technical report, University of Calgary, 2009.

Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Information
needs in bug reports: improving cooperation between developers and users. In
Proceedings of the 2010 ACM conference on Computer supported cooperative
work, pages 301-310. ACM, 2010.

Juan Cao, Tian Xia, Jintao Li, Yongdong Zhang, and Sheng Tang. A density-based
method for adaptive lda model selection. Neurocomputing, 72(7):1775-1781, 2009.

Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions. In
Psychological Bulletin, volume 114, pages 494-509, 1993.

Daniel Alencar da Costa, Shane MclIntosh, Uird Kulesza, Ahmed E Hassan, and
Surafel Lemma Abebe. An empirical study of the integration time of fixed issues.
Empirical Software Engineering Journal (EMSE), pages 1-50, 2017a.

Daniel Alencar da Costa, Shane Mclntosh, Christoph Treude, Uird Kulesza, and
Ahmed E Hassan. The impact of rapid release cycles on the integration delay of
fixed issues. Empirical Software Engineering Journal (EMSE), pages 1-70,2017b.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine learning,
pages 233-240. ACM, 2006.

C Mitchell Dayton. Logistic regression analysis. Stat, pages 474-574, 1992.

Romain Deveaud, Eric SanJuan, and Patrice Bellot. Accurate and effective latent
concept modeling for ad hoc information retrieval. Document numérique, 17(1):
61-84, 2014.

Title Suppressed Due to Excessive Length 33

Pedro Domingos and Michael Pazzani. Beyond independence: Conditions for the
optimality of the simple bayesian classi er. In Proc. 13th Intl. Conf. Machine
Learning, pages 105-112, 1996.

Ali Erdem, W Lewis Johnson, and Stacy Marsella. Task oriented software under-
standing. In Automated Software Engineering, 1998. Proceedings. 13th IEEE
International Conference on, pages 230-239. IEEE, 1998.

Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. Works for me! char-
acterizing non-reproducible bug reports. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 62-71. ACM, 2014.

Chiara Francalanci and Francesco Merlo. Empirical analysis of the bug fixing process
in open source projects. In IFIP International Conference on Open Source Systems,
pages 187-196. Springer, 2008.

Amir Hossein Ghapanchi and Aybuke Aurum. Measuring the effectiveness of the
defect-fixing process in open source software projects. In System Sciences (HICSS),
2011 44th Hawaii International Conference on, pages 1-11. IEEE, 2011.

Emanuel Giger, Martin Pinzger, and Harald Gall. Predicting the fix time of bugs. In
Proceedings of the 2nd International Workshop on Recommendation Systems for
Software Engineering (RSSE), pages 52-56, 2010.

Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
Work practices and challenges in pull-based development: the integrator’s perspec-
tive. In Proceedings of the 37th International Conference on Software Engineering-
Volume 1, pages 358-368. IEEE Press, 2015.

Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National academy of Sciences, 101(suppl 1):5228-5235, 2004.

Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
Characterizing and predicting which bugs get fixed: An empirical study of microsoft
windows. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering (ICSE), pages 495-504, 2010a.

Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
Characterizing and predicting which bugs get fixed: an empirical study of mi-
crosoft windows. In 2010 ACM/IEEE 32nd International Conference on Software
Engineering, volume 1, pages 495-504. IEEE, 2010b.

Steffen Herbold, Jens Grabowski, Stephan Waack, and Uwe Biinting. Improved
bug reporting and reproduction through non-intrusive gui usage monitoring and
automated replaying. In Software Testing, Verification and Validation Workshops
(ICSTW), 2011 IEEE Fourth International Conference on, pages 232-241. IEEE,
2011.

James D Herbsleb and Eiji Kuwana. Preserving knowledge in design projects: What
designers need to know. In Proceedings of the INTERACT’ 93 and CHI’93 confer-
ence on Human factors in computing systems, pages 7-14. ACM, 1993.

Israel Herraiz, Daniel M. German, Jesus M. Gonzalez-Barahona, and Gregorio Robles.
Towards a simplification of the bug report form in eclipse. In Proceedings of the
2008 International Working Conference on Mining Software Repositories (MSR),
pages 145-148, 2008.

Joseph M Hilbe. Logistic regression models. CRC press, 2009.

34 Yonghui Huang et al.

Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated software
engineering, pages 34-43. ACM, 2007.

Karen Sparck Jones. Readings in information retrieval. Morgan Kaufmann, 1997.

Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken-ichi Matsumoto, Bram
Adams, and Ahmed E Hassan. Revisiting common bug prediction findings using
effort-aware models. In Software Maintenance (ICSM), 2010 IEEE International
Conference on, pages 1-10. IEEE, 2010.

Sunghun Kim and E. James Whitehead, Jr. How long did it take to fix bugs? In
Proceedings of the 2006 International Workshop on Mining Software Repositories
(MSR), pages 173—174, 2006.

Andrew J Ko and Parmit K Chilana. Design, discussion, and dissent in open bug
reports. In Proceedings of the 2011 iConference, pages 106-113. ACM, 2011.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R
news, 2(3):18-22, 2002.

Rafael Lotufo, Leonardo Passos, and Krzysztof Czarnecki. Towards improving bug
tracking systems with game mechanisms. In Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, pages 2—11. IEEE Press, 2012.

Lionel Marks, Ying Zou, and Ahmed E. Hassan. Studying the fix-time for bugs in
large open source projects. In Proceedings of the 7th International Conference on
Predictive Models in Software Engineering (PROMISE), pages 11:1-11:8, 2011.

Douglas R McCallum and James L Peterson. Computer-based readability indexes. In
Proceedings of the ACM’82 Conference, pages 44—48. ACM, 1982.

Shane Mclntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. An empirical
study of the impact of modern code review practices on software quality. Empirical
Software Engineering, pages 1-44, 2015.

Choetkiertikul Morakot, Dam Hoa Khanh, Tran Truyen, and Ghose Aditya. Predicting
delays in software projects using networked classification. In 30th International
Conference on Automated Software Engineering (ASE), 2015.

Choetkiertikul Morakot, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Predict-
ing the delay of issues with due dates in software projects. Empirical Software
Engineering Journal (EMSE), pages 1-41, 2017.

Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Chengnian
Sun. Duplicate bug report detection with a combination of information retrieval and
topic modeling. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 70-79. ACM, 2012.

Masao Ohira, Ahmed E Hassan, Naoya Osawa, and Ken-ichi Matsumoto. The impact
of bug management patterns on bug fixing: A case study of eclipse projects. In
Software Maintenance (ICSM), 2012 28th IEEE International Conference on, pages
264-273. IEEE, 2012.

Lucas D Panjer. Predicting eclipse bug lifetimes. In Proceedings of the Fourth
International Workshop on mining software repositories (MSR), page 29. IEEE
Computer Society, 2007.

Martin Ponweiser. Latent dirichlet allocation in r. 2012.

David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation. 2011.

Title Suppressed Due to Excessive Length 35

Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are better.
In Proceedings of the 2013 International Conference on Software Engineering,
pages 432-441. 1EEE Press, 2013.

Mohamed Sami Rakha, Weiyi Shang, and Ahmed E Hassan. Studying the needed
effort for identifying duplicate issues. Empirical Software Engineering, pages 1-30,
2015.

Mohamed Sami Rakha, Weiyi Shang, and Ahmed E Hassan. Studying the needed
effort for identifying duplicate issues. Empirical Software Engineering, 21(5):
1960-1989, 2016.

Mohamed Sami Rakha, Cor-Paul Bezemer, and Ahmed E Hassan. Revisiting the
performance evaluation of automated approaches for the retrieval of duplicate issue
reports. IEEE Transactions on Software Engineering, 2017.

Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop
on empirical methods in artificial intelligence, volume 3, pages 41-46. IBM New
York, 2001.

Tobias Roehm, Nigar Gurbanova, Bernd Bruegge, Christophe Joubert, and Walid
Maalej. Monitoring user interactions for supporting failure reproduction. In Pro-
gram Comprehension (ICPC), 2013 IEEE 21st International Conference on, pages
73-82. IEEE, 2013.

Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek. Should
we really be using t-test and cohen’s d for evaluating group differences on the nsse
and other surveys? In Annual meeting of the Florida Association of Institutional
Research, 2006.

Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate
defect reports using natural language processing. In Proceedings of the 29th in-
ternational conference on Software Engineering, pages 499-510. IEEE Computer
Society, 2007.

R.K. Saha, S. Khurshid, and D.E. Perry. An empirical study of long lived bugs.
In 2014 Software Evolution Week - IEEE Conference onSoftware Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), pages 144—153, Feb 2014.

David J Sheskin. Handbook of parametric and nonparametric statistical procedures.
crc Press, 2003.

Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao Ohira, Bram
Adams, Ahmed E Hassan, and Ken-ichi Matsumoto. Predicting re-opened bugs:
A case study on the eclipse project. In Reverse Engineering (WCRE), 2010 17th
Working Conference on, pages 249-258. IEEE, 2010.

Jonathan Sillito, Gail C Murphy, and Kris De Volder. Questions programmers ask
during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pages 23-34. ACM,
2006.

Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim
Zeileis. Conditional variable importance for random forests. BMC bioinformatics,
9(1):1, 2008.

Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. A dis-
criminative model approach for accurate duplicate bug report retrieval. In Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering-

36 Yonghui Huang et al.

Volume 1, pages 45-54. ACM, 2010.

Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards more accurate
retrieval of duplicate bug reports. In Automated Software Engineering (ASE), 2011
26th IEEE/ACM International Conference on, pages 253-262. IEEE, 2011.

Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed Hassan, and Kenichi Mat-
sumoto. An empirical comparison of model validation techniques for defect pre-
diction models. IEEE Transactions on Software Engineering, 2015.

Yuan Tian, Dinusha Wijedasa, David Lo, and Claire Le Gouesy. Learning to rank for
bug report assignee recommendation. In Program Comprehension (ICPC), 2016
IEEE 24th International Conference on, pages 1-10. IEEE, 2016.

Pradeep K Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E Hassan.
What concerns do client developers have when using web apis? an empirical study
of developer forums and stack overflow. 2016.

Cathrin Weif3, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How long
will it take to fix this bug? In Proceedings of the Fourth International Workshop
on Mining Software Repositories (MSR), pages 1—, 2007.

Wikipedia. Multicollinearity — wikipedia, the free encyclopedia, 2017. URL
https://en.wikipedia.org/w/index.php?title=Multicollinearity&
01did=762815943. [Online; accessed 6-February-2017].

Xin Xia, David Lo, Emad Shihab, Xinyu Wang, and Bo Zhou. Automatic, high
accuracy prediction of reopened bugs. Automated Software Engineering, 22(1):
75-109, 2015.

Robert K Yin. Case study research: Design and methods. Sage publications, 2013.

Feng Zhang, F. Khomh, Ying Zou, and A.E. Hassan. An empirical study on factors
impacting bug fixing time. In Reverse Engineering (WCRE), 2012 19th Working
Conference on, pages 225-234, Oct 2012a.

Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. An empirical study
of the effect of file editing patterns on software quality. In Proceedings of the
19th Working Conference on Reverse Engineering, WCRE 12, pages 456-465,
oct. 2012b.

Hongyu Zhang, Liang Gong, and Steve Versteeg. Predicting bug-fixing time: An
empirical study of commercial software projects. In Proceedings of the 2013
International Conference on Software Engineering (ICSE), pages 1042-1051,2013.

Thomas Zimmermann, Nachiappan Nagappan, Philip J Guo, and Brendan Murphy.
Characterizing and predicting which bugs get reopened. In Proceedings of the 34th
International Conference on Software Engineering, pages 1074—1083. IEEE Press,
2012.

https://en.wikipedia.org/w/index.php?title=Multicollinearity&oldid=762815943
https://en.wikipedia.org/w/index.php?title=Multicollinearity&oldid=762815943

	Introduction
	Motivation Example
	Data Processing
	RQ1: What type of questions are asked by developers?
	RQ2: Are issue reports with raised questions different from issue reports without raised questions?
	RQ3: Is the occurrence of questions predictable?
	Threats to validity
	Related Work
	Conclusion

